Information

Is this a Loranthus Europaeus?

Is this a Loranthus Europaeus?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Location: Austria, Vienna Ottakringer Wald Date: Feb 8

I found something beneath a tree with epiphyta , which I thought to be Viscum album but is vividly yellow instead of white and I found no leaves.

My search of subspecies of Viscum album initially revealed:

Viscum album subsp. austriacum (Wiesb.) Vollmann. Fruit yellow; leaves 2-4 centimetres (0.79-1.57 in). Central Europe. On Larix, Pinus, Picea.

But then I began to think it shouldn't be V. album. In illustrations of V. album there aren't the thin stalks between berries and branches as in my specimen.

Perhaps Loranthus europaeus?


You are quite right: it's Loranthus europaeus. Vienna was the prime example in our botany lectures where to see that plant without a fuzz.

c/p from the Flora of Vienna: "Auf Eichen, vorzüglich auf Quercus pedunculata und Qu. sessiliflora, selten. Im Eichenwalde von Schönbrunn, auf dem Gallizin, hinter Neuwaldeck, hin und wieder; viel häufiger auf dem Bisamberge {A}… auf den grössern Donau-Inseln z. B… in der Lobau {C}."

"Häufigkeit des Vorkommens: häufig bis sehr häufig"

(Confused about the contradicting "rare" and "frequent to very frequent" statements, but anyway.)

Here are some more pictures.


Quercus pubescens and its hemiparasite Loranthus europaeus: nutrient dynamics of leaves and twigs

Despite a long history of observations of the hemiparasitic plant, mistletoe, the mechanism of mineral movement from the host to the mistletoe is still not fully understood. In this article, we focused on the leaf development and nutrient dynamics of Loranthus europaeus and the host tree, Quercus pubescens. The nitrogen, potassium and calcium contents of leaves, current-year twigs and 1-year-old twigs were analysed. The timing of the leaf development differed between species. Leaf expansion occurred in the first 23 and 136 days, and leaf senescence took 78 and 24 days for Quercus and Loranthus, respectively. The similar nitrogen concentrations per unit leaf area may indicate that both species have the same assimilation rate. The differences in nutrient accumulation seem to support the hypothesis that nitrogen is the limiting nutrient in the transpiration stream. Larger differences in the nutrient dynamics between species were revealed in the accumulation potassium and calcium. Nutrients seemed to be transferred passively through the xylem sap between Loranthus and Quercus as we found a strong correlation between the calcium and potassium concentrations within the species and between the species. There was no correlation in the case of 1-year-old twigs, possibly due to the relatively small amount of nutrients incorporated into 1-year-old twigs and the fact that nutrient translocation occurs according the needs of the physiologically more active leaves and current-year-old twigs.

This is a preview of subscription content, access via your institution.


Flavonoids of Loranthus europaeus

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Note: In lieu of an abstract, this is the article's first page.


Anunțuri și noutăți

Urmăriți această secțiune pentru a fi la curent cu ultimele noutăți.

University of Tirana, Albania

Prezentare in cadrul programului Erasmus+ Dr. Dritan Topi Curriculum vitae University of Tirana, Albania „Man-Made Chemicals As Endocrine Disruptors„.Joi, 24.06.2021 ora 10:00Online Platforma Microsoft Teams:

Recrutare și selecție studenți pentru desfășurarea de activități în cadrul Call Center Student la UAIC

Dragi studenți, Aveți posibilitatea să câștigați o bursă de 580 lei/lună, timp de 2 luni (iulie si septembrie 2021) dacă veți sprijini UAIC în procesul de admitere de anul acesta,[&hellip]

Susținere referat II – Stache Alexandru Bogdan – 28.06.2021

Luni 28 iunie 2021, începând cu orele 9:00, drd. Stache Alexandru Bogdan va susţine (online platforma Microsoft Teams), referatul II din cadrul programului de cercetare ştiinţifică. Detali… Titlul referatului II:[&hellip]

Susținere referat II – Olaru Ștefan-Mihăiță – 25.06.2021

Vineri 25 iunie 2021, începând cu orele 10:00, drd. Olaru Ștefan-Mihăiță va susţine (onsite sala B-460), referatul II din cadrul programului de cercetare ştiinţifică. Detali… Titlul referatului II: „Modificări funcționale[&hellip]


Loranthus micranthus Linn.: Biological Activities and Phytochemistry

Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus.

1. Introduction

Loranthus micranthus (L. micranthus) as member of the Loranthaceae family is the eastern Nigeria species of the African mistletoe. Mistletoes are the semiparasitic plants because they normally grow on various host trees and shrubs and they are dependent on their respective host for mineral nutrition and water, although they produce their own carbohydrates through photosynthesis [1]. Mistletoe was described as “an all purpose herb” due to its rich traditional uses and it has been widely used in ethnomedicine for various purposes, including antihypertensive, anticancer, antispasmodic, and antidiabetic, and for treatment of epilepsy, headache, infertility, menopausal syndrome and rheumatism [2, 3]. Previous studies demonstrated that composition and hence biological activities of mistletoe are dependent on harvesting period and host tree species [4–7]. Nigeria has wide distribution of mistletoes with different local names that depend on the area where they occur. Loranthus micranthus represents Eastern Nigeria mistletoes that mostly grow in the southeastern region of the country. It grows on various host trees including Persia americana, Baphia nitida, Kola acuminata, Pentaclethra macrophylla, and Azadirachta indica [8, 9]. L. micranthus has been widely used in folk medicine as antimicrobial, antihypertensive, anticancer, and antidiabetic agent, for treatment of headache, infertility, epilepsy, cardiovascular diseases, menopausal syndrome, agglutination, and rheumatism, and also in conditions that generally require immunomodulatory. Some of these ethnomedicinal uses have already been supported and acclaimed by several investigations [1, 2, 10, 11]. In Nigeria and South Africa, L. micranthus has been widely used as ethnomedicine for treatment of hypertension, diabetes, and schizophrenia and as an immune system booster [10].

2. Phytochemistry

Extensive phytochemical evaluations of L. micranthus extracts demonstrated the presence of various phytoconstituents and compounds. Crude methanolic extract from leaves of L. micranthus harvested from P. americana was found to possess terpenoids, steroids, oils, proteins, resins, flavonoids, tannins, saponins, alkaloids, reducing sugar, acidic compounds, glycosides, and carbohydrates. Alkaloids showed the highest presence in abundance. The weakly acidic fraction analysis isolated from aqueous methanolic extract of leaves of L. micranthus showed the presence of terpenoids, steroids, acidic compounds, flavonoids, and carbohydrate. Lower rate of flavonoids and carbohydrates elicited in comparison with methanolic extract, while the amount of terpenoids, acidic compounds, and steroids remained unchanged [28]. Chemical composition of L. micranthus was found to be seasonal dependent. During April, the onset of rainy season, methanolic extract of the leaves harvested from P. Americana showed higher concentrations of carbohydrates, acidic compounds, steroids, and alkaloids compared to July, the time for peak of rainy season. Interestingly, Tannins, saponins, glycosides, and reducing sugars were not found in July samples. However, higher amounts of flavonoids and oils were detected in July samples compared to April ones [29]. Iwalokun and colleagues [30] have investigated the phytochemicals such as n-butanol, chloroform, ethyl acetate, and water fractions of the methanolic extract of L. micranthus leaves of Kola nut tree (K. acuminata). Moderate and high levels of steroids and terpenoids were detected in n-butanol fraction, while phenolics, reducing sugars, and tannins were detected in all fractions together with moderate level for phenolics and tannins in chloroform fraction. Indeed, flavonoids and saponins were only present in ethyl acetate and water fractions, respectively. They have demonstrated that terpenoids were present in low-to-moderate levels in chloroform and water fractions, while they were not detected in ethyl acetate fraction. Phytochemical studies on L. micranthus leaves harvested from six different host trees, namely, P. americana, B. nitida, K. acuminata, P. macrophylla, A. indica, and Irvingia gabonensis, revealed that alkaloids are preponderant in the extracts of K. acuminata, P. Americana, and I. gabonensis. Moreover, the phytochemical constituent host dependency was also shown [31, 32]. A study on petroleum ether extract of L. micranthus leaves parasitic on P. americana harvested at different seasons (January, April, July, and November) showed only presence of alkaloids in April and July and proved harvesting period dependency in phytochemicals of L. micranthus [33]. In several studies attempting to identify the active compounds responsible for various biological activities of L. micranthus, especially immunomodulatory activity, a variety of compounds (Table 1) were isolated and their structures were characterized (Figure 1).


(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)
(m)
(n)
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)
(m)
(n)

3. Biological Activities

Fractions, pure compounds, and crude extracts of plants are precious and crucial resources for effective molecules in treatment of different diseases and ailments in animal and human [34]. L. micranthus has been found to possess antidiabetic, antimicrobial, antihypertensive, hypolipidemic, antioxidant, antidiarrhoeal, and immunomodulatory activities. A study by Edem and Usoh [35] demonstrated that the use of L. micranthus is safe and without adverse biochemical effects or hepatocellular damages in rats. They have administered different doses of the water extract of L. micranthus leaves from 275 to 827 mg/kg for 21 days on male albino Wistar rats. Blood samples analysis did not reveal any significant changes in the level of protein, urea, glucose, bilirubin, cholesterol, alkaline phosphatase, and aspartate transaminase. However, significant reduction was observed in the level of alanine transaminase enzyme by using 551 and 827 mg/kg of the extract. However, an in vitro study on aqueous leaf extract of L. micranthus indicated cytotoxic, genotoxic, and mitodepressive effects of that extract against Allium cepa root cells especially at dose beyond pharmacological range [36]. They showed a significant inhibition of root growth with an effective concentration (EC50) of 28.2 mg/mL. The extract revealed dose-dependent decrease in mitotic index by 2.4–27.4% using a range from 5 to 40 mg/mL of the extract except at 2.5 mg/mL in which 11.9% elevation was reported compared to 50% decrease for sodium azide used at 100 μg/mL as positive control. Hence, for safety reasons, using the lower concentrations of L. micranthus for human phytomedicine in prolonged use coupled with in vivo genotoxic tests is suggested [36].

3.1. Immunomodulatory Activity

Stimulation of human immune system has been identified as a possible pathway to inhibit the progression of some diseases without eliciting adverse side effects [37, 38]. However, immune system stimulation is a desired response if overall process culminates with cure or faster convalescence from sickness [39, 40]. One folkloric use of L. micranthus is due to its ability to enhance the immune system with concomitant quicker convalescence [10]. An in vivo study on aqueous-methanol extract from L. micranthus leaves harvested from five different host trees has investigated the immunomodulatory activity in rat and mice models, including the cyclophosphamide-induced myelosuppression (CIM) test, the humoral mediated antibody titration (AT) test, total and differential leukocyte count (TLC and DLC), and the cellular mediated delayed-type hypersensitivity reaction (DTHR) test [10]. According to the results, the extracts (with overall order of activity from K. acuminate > Citrus spp. > P. Americana > Parkia biglobosa > P. macrophylla) were found to be potent and safe complementary or alternative medicines to cure the immunodeficiency conditions without any toxicity (LD50 values > 5000 mg/kg for acute toxicity tests). Leaves extract parasitic on K. acuminate at a dose of 200 mg/kg caused 139.69% stimulation of total leukocyte in mice compared to 75.35% increase for levamisole (25 mg/kg) as a standard immunostimulatory drug. At dose of 100 mg/kg, it also showed 175% stimulation on DTHR in immunocompetent mice compared to 122.50% increase for levamisole as positive control. 71.35% and 81.53% of primary and secondary stimulation on antibody titration in rats at a dose of 100 mg/kg of leaves extract also exhibited the significant immunomodulatory effect compared to 24.50% and 0.40% of primary and secondary stimulation for levamisole (25 mg/kg), respectively [10, 41]. Results from another study by the same group showed that ethanol and n-hexane leaves extracts parasitic on P. americana at doses from 100 to 400 mg/kg also exhibited a dose-dependent immunomodulatory activity assessed by DTHR and CIM models in mice. Results showed over 170% of stimulation for both extracts at 400 mg/kg dose [42]. The immunomodulatory analysis of five different extracts of L. micranthus leaves, parasitic on K. acuminata, namely, n-hexane, chloroform, ethyl acetate, acetone, and methanol by DTHR test in experimental mice and their phytochemical evaluation of the fractions, demonstrated that the most active fractions were either mainly terpenoidal, flavonoidal, or steroidal [43]. The results also confirmed the most significant immunostimulatory effects for chloroform extract with 311.11% and 122.22% enhancement in stimulation using 250 and 500 mg/kg of the extract, respectively. The compounds 1214 at dose of 100 μg/mL showed increasing effects on C57BL/6 mice splenocytes proliferation with 91.49%, 95.17%, and 94.23% stimulation values, respectively, compared to 16.09% stimulation for 10 μg/mL of lipopolysaccharide (LPS) as positive control. However, compounds 12, 13 and 14 exhibited moderate stimulatory effect on CD69 molecule expression [22]. The compound 15 with dose of 100 μg/mL exhibited a weak immunostimulatory activity by inducing 24.44% and 86.98% stimulation of mice splenocytes proliferation and early activation of CD69 molecule, respectively. In addition, it also showed a nonsignificant effect on IL-8 receptor expression [44]. The steroids compounds of 18 and 19 at a dose of 100 μg/mL exhibited significant immunostimulatory activity on the C57BL/6 mice splenocytes with 46% and 43% stimulation, respectively, compared to 7.69% increase for the negative control, although CD69 expression assay revealed minimal stimulation. The compounds 16 and 17 with the same concentration showed weaker stimulations of 30% and 29%, respectively, on the C57BL/6 mice splenocytes [24]. Also, a mild immunostimulatory activity was observed for compound 20 when it was tested on C57BL/6 splenocytes [25]. However, 69.84% and 56.34% stimulation elicited from compounds 21 and 22 at a dose of 25 μg/mL for proliferation analysis on mice splenocytes (C57BL/6) compared to 7.58% value for unstimulated control. The CD69 expression assay also exhibited significant proliferation values of 2.71% and 2.31% for compounds of 21 and 22, respectively [27].

3.2. Antidiabetic Activity

Diabetes mellitus is one of the prevalent and serious chronic diseases around the world [45]. Therefore, finding the promising ways to improve the quality of life for diabetic patients and preventing or reversing diabetic complications necessitate investigations among the arsenal of herbs [46]. Osadebe and colleagues [32] have studied the anti-diabetic activity of the methanolic extracts of leaves of L. micranthus parasitic on P. americana, B. nitida, K. acuminata, P. macrophylla, and A. indica. The extracts were found to possess significant dose-dependent antihyperglycemic effects in alloxan-induced diabetic albino and normoglycemic rats, respectively. The maximum activity of the methanolic extract of L. micranthus (400 mg/kg) harvested from P. americana on alloxan-induced diabetic rats showed 82.59% reduction of blood sugar level at 24 h after administration determined by o-toluidine spectrophotometric method which is statistically comparable with the 83.34% of reduction for glibenclamide as a positive control. Methanolic extracts of L. micranthus from five different host trees did not show any toxicity according the acute toxicity tests in mice (LD50 values of 11650, 11650, 5900, 5900, and 5900 mg/kg for P. americana, B. nitida, K. acuminata, P. macrophylla, and A. indica, resp.). The leaves of L. micranthus parasitic on K. acuminata, A. indica, and B. nitida showed more significant antihyperglycemic activity among the other host trees investigated. The results demonstrated that the antidiabetic effect of the extract was found to be dependent on the host plant species. The weakly acidic fraction of the aqueous methanol extract of the leaves of L. micranthus parasitic on P. americana revealed anti-diabetic activity in alloxan-induced diabetic rats. The low-acidic fraction at the dose of 400 mg/kg reduced 66.60% of blood sugar level of alloxan-induced diabetic rats at 24 hours after administration [28]. However, Osadebe and colleagues [29] have studied the seasonal variation for the anti-diabetic effect of the aqueous methanolic extract of the leaves of L. micranthus, parasitic on P. americana, in alloxan-induced diabetic rats. The study demonstrated that anti-diabetic effect of the extract is seasonal and dose dependent with the highest activity being at the peak of the rainy season. The results revealed 39.2% and 47.5% fasting blood sugar reduction after 6 hours consumption of 400 mg/kg of April and July samples, respectively, with 8.3% difference due to effect of seasonal variation on chemical content of leaves. Higher concentration for flavonoids in peak of the rainy season compared to the onset of rainy season could be responsible for the observed higher anti-diabetic activity in July. However, there is no data available for the particular bioactive compound(s) from L. micranthus with known mechanism for anti-diabetic activity. Therefore, this is an open area for the future research around this plant. Uzochukwu and Osadeb [47] have studied a comparative evaluation of antidiabetic activities of crude methanolic extract and flavonoids extract of L. micranthus harvested from K. acuminata in alloxan-induced diabetic rats. Results revealed that flavonoids extract (200 mg/kg) showed significant anti-diabetic effect within one hour of administration, while the methanolic extract (200 mg/kg) showed the significant antidiabetic effect within three hours of administration. In addition, phytoconstituents of other members of Loranthaceae plants possessing antihypertensive activity are interestingly similar to L. micranthus [48–50].

3.3. Antimicrobial Activity

Using medicinal plants as antimicrobial remedy has a long history in both developed and developing countries. In addition, in contemporary medicine because of unreasonable and indiscriminate consumption of antimicrobial drugs, the infectious microorganisms have developed resistance. Therefore, controlling the existing infectious diseases necessitates new alternative antimicrobial drug regimens [51]. Osodebe and Ukwueze have presented the wide range of data regarding the antimicrobial activities of L. micranthus [31]. A study on different extracts of L. micranthus leaves harvested from K. acuminata such as methanolic, ethanolic, chloroform, and petroleum ether extracts demonstrated the antibacterial activities for all tested extracts against Bacillus subtilis, Escherichia coli, and Klebsiella pneumonia, while only petroleum ether extract exerted antifungal activity against Aspergillus niger and Candida albicans with the MIC of 4.30 and 1.73 mg/mL, respectively, and no activity against Klebsiella pneumonia. The methanolic extract exhibited the most potent antibacterial effect against Bacillus subtilis and Escherichia coli with MIC of 1.58 and 1.48 mg/mL, respectively, compared to the other tested extracts [52]. The ethyl acetate fraction of crude petroleum ether extract of L. micranthus leaves parasitic on K. acuminata also showed inhibitory activities against Candida albicans and Bacillus subtilis [53]. A comparative investigation on antimicrobial activities of L. micranthus leaves and its phytochemicals from six different host trees, including P. americana, B. nitida, K. acuminata, P. macrophylla, A. indica, and I. gabonensis, indicated the relative significant antibacterial activities for L. micranthus parasitic on K. acuminata and P. americana. Alkaloids in these three species were found to be most abundant. Preponderance of alkaloids in these species could be responsible for the marked antimicrobial activities. The leaves extract parasitic on P. Americana exerted more potent antibacterial activity against Pseudomonas aeruginosa compared to amoxicillin, while the extracts from A. indica, P. macrophylla, and I. gabonensis exhibited stronger antibacterial activity against Staphylococcus aureus in comparison with amoxicillin [31]. Effect of different harvesting seasons (January, April, July, and November) on antimicrobial activity of petroleum ether extracts from L. micranthus leaves, parasitic on P. americana, and its phytochemicals, also demonstrated seasonal dependency. Alkaloids as one of the major groups of antibacterial candidates was only found in July and April. Antibacterial activity against Salmonella typhi and Bacillus subtilis was markedly lower in January samples compared to the extracts from the other months’ samples [33, 54]. In addition, no significant antifungal activity for methanolic extracts of L. micranthus leaves harvested from K. acuminata, P. Americana, and I. gabonensis was demonstrated against A. niger (MIC > 3 mg/mL) and C. albicans (MIC > 4 mg/mL) compared to ketoconazole (MIC < 1 mg/mL) as an approved antifungal agent [55]. To sum up, it has been proven that leaf extracts of L. micranthus elicited significant antibacterial activity against B. subtilis, P. aeruginosa, E. coli, and Staph. aureus without significant antifungal activity [56].

3.4. Antihypertensive Activity

Deaths because of hypertension arise out of cardiovascular and cerebrovascular complications including cardiac arrest, stroke, myocardial infarction, congestive heart failure, and end-stage renal disease [57]. Early detection and commencement of treatment are vital for prevention and delaying the aftermaths and enhance the chance of longer life for afflicted patients [58]. In the last few decades, plants have still remained as a rich source for efficacious, safe, and cost-effective antihypertensive drugs [59]. L. micranthus is one of the plants identified with antihypertensive activity for humans and animals in sub-Saharan Africa [60]. Aqueous extract of L. micranthus (1.32 g/kg per day) exhibited hypotensive effect on normotensive and spontaneous hypertensive rats [61]. A noteworthy reduction in the mean arterial pressure (MAP) was obtained in both groups of rats without effect on the urinary flow rate or the respiratory rate. In addition, the level of total cholesterol exhibited significant reduction on days 6, 7, and 8 [61]. Indeed, methanolic extract of leaves of L. micranthus demonstrated a dose-dependent inhibition of blood pressure increase in adrenaline-induced hypertensive rat. Iwalokun and colleagues [30] studied the activity of n-butanol, chloroform, ethyl acetate, and water fraction of the methanolic extract of L. micranthus leaf harvested from K. acuminata on pressor-induced contraction of rat aorta smooth muscles. N-Butanol fraction showed the highest dose-dependent inhibitory activity (EC50 = 0.65 mg/mL and smooth muscle relaxation of 75.2%) on rat aorta precontracted with norepinephrine and KCl, followed by decreasing order by water, chloroform, and ethyl acetate fractions. The same order of activity was observed in the ability of these fractions to reduce cardiac arginase with 11.7% reduction for n-butanol fraction and to raise serum nitric oxide with 55% elevation for n-butanol fraction in mice orally administrated 250 mg/kg of fractions for 21 days. Arginase was found to be a diagnostic indicator for cardiovascular diseases including hypertension [62]. Enhanced activity of nitric oxide is a critical factor to reduce the vascular resistance and blood pressure that increased in hypertensive rats and humans [63, 64]. Cardiac arginase reduction, vasorelaxation, antiatherogenic events, and nitric oxide (NO) elevation were found to be responsible for antihypertensive activity of L. micranthus. Moderate and high abundance of steroids and terpenoids in n-butanol fraction strongly suggested that these phytoconstituents could be responsible for observed vasorelaxant and antiatherogenic activity of n-butanol fraction. Iwalokun and colleagues [30] have reviewed the possible mechanisms of antihypertensive activity of L. micranthus.

3.5. Antioxidant Activity

The role of free radicals in many diseases has been proven by recent developments in biomedical sciences. Cellular damage caused by free radicals is possibly responsible for many degenerative diseases including heart disease, cancer, brain dysfunction, and immune system decline [65]. Phenolic compounds are potent scavengers of free radicals [66]. The antioxidant activity of compounds 111 isolated from methanol extracts of L. micranthus leafy twigs was investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. All the tested compounds revealed significant antioxidant effect (IC50 = 23.8–50.1 μM) compared to chlorogenic acid as a positive control (IC50 = 67.9 μM). Compounds 10 and 11 exhibited the most significant antioxidant activity [12]. The results of DPPH assay on compounds 1214 revealed significant antioxidant potentials with EC50 of 55.42, 58.45, and 59.71 mg/mL, respectively, compared to ascorbic acid as a positive control with EC50 = 17.6 mg/mL [22].

3.6. Antidiarrhoeal Activity

Diarrhoea due to the risk of sever potentially fatal dehydration can be a serious complication in infants and elderly people [67]. About 2.2 million people, mostly infants and children below 5 years, are victims of diarrhea annually [68]. Because of the adverse effects of some existing antimotility medicines after prolonged use, many studies have been done for an alternative remedy among traditional medicinal herbs [69, 70]. In vivo study on methanolic extract of L. micranthus leaf harvested from six different host trees, including P. americana, B. nitida, K. acuminata, P. macrophylla, C. sinensis, and I. gabonensis, indicated antimotility effect in rats with castor-oil-induced diarrhoea. Methanolic extract of L. micranthus parasitic on P. macrophylla (200 mg/kg) showed the most significant decrease on defecation (93.33%) 4 hours after administration compared to atropine sulphate (2 mg/kg) as a positive control (80%). It also significantly inhibited gastrointestinal transit by 67.6% which is more than atropine sulphate (26.4%) [9].

3.7. Hypolipidemic Activity

The serum lipid analysis in mice orally was administered with 250 mg/kg of n-butanol, chloroform, ethyl acetate, and water fractions of the methanolic extract of L. micranthus harvested from K. acuminata for 21 days indicated with decrease in cholesterol and triglyceride with the highest activity for n-butanol fraction. Results demonstrated lower total cholesterol, triglycerides (TAG), and LDL-cholesterol levels particularly for n-butanol and water fractions after 21 days without significant changes for HDL-cholesterol. On day 21, n-butanol fraction significantly reduced TAG level (

mg/dL). Total cholesterol and LDL-cholesterol levels also reduced from mg/dL to

mg/dL by n-butanol fraction on the day 21, respectively [30].

4. Conclusion

The overview of scientific investigations on L. micranthus showed various biological activities for this plant. The phytochemical constituents and the activity of the medicinal values of L. micranthus are strongly dependent on harvesting season and host species trees. Phytochemicals and compounds isolated from L. micranthus are in interest for the further investigations towards application of this plant as anti-diabetic, antibacterial, antihypertensive, hypolipidemic, antioxidant, antidiarrhoeal, and immunomodulatory medicines. Further in vivo genotoxic tests of this plant can be also beneficial for the safety approval for therapeutic applications.

Conflict of Interests

All authors declared that there is no actual or potential conflict of interests including any financial, personal, or other relationships with other people or organizations that could inappropriately influence or be perceived to influence their work.

Acknowledgment

The authors thank the Ministry of Higher Education (MOHE), Malaysia, for High Impact Research (HIR) MOHE Grant (E000013-20001). They also would like to thank the University of Malaya for University Malaya Research Grant (UMRG) (RG383-11HTM).

References

  1. P. Griggs, “Mistletoe, myth, magic and medicine,” The Biochemist, vol. 13, pp. 3–4, 1991. View at: Google Scholar
  2. N. Nwude and M. A. Ibrahim, “Plants used in traditional veterinary medical practice in Nigeria,” Journal of Veterinary Pharmacology and Therapeutics, vol. 3, no. 4, pp. 261–273, 1980. View at: Google Scholar
  3. E. Kafaru, “‘Mistletoe𠅊n example of an all-purpose herb’ Herbal Remedies,” Guardian Newspaper, vol. 3, p. 11, 1993. View at: Google Scholar
  4. T. Fukunaga, I. Kajikawa, K. Nishiya, K. Takeya, and H. Itokawa, “Studies on the constituents of Japanese mistletoes from different host trees, and their antimicrobial and hypotensive properties,” Chemical and Pharmaceutical Bulletin, vol. 37, no. 6, pp. 1543–1546, 1989. View at: Google Scholar
  5. R. Scheer, A. Scheffler, and M. Errenst, “Two harvesting times, summer and winter: are they essential for preparing pharmaceuticals from mistletoe (Viscum album)?” Planta Medica, vol. 58, no. 7, pp. 594–599, 1992. View at: Google Scholar
  6. D. K. Obatomi, E. O. Bikomo, and V. J. Temple, “Anti-diabetic properties of the African mistletoe in streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 43, no. 1, pp. 13–17, 1994. View at: Publisher Site | Google Scholar
  7. M. L. Wagner, T. Fernandez, E. Alvarez, R. A. Ricco, S. Hajos, and A. A. Gurni, “Micromolecular and macromolecular comparison of Argentina mistletoe (Ligaria cuneifolia) and European mistletoe (Viscum album L.),” Acta Farmaceutica Bonaerense, vol. 15, no. 2, pp. 99–108, 1996. View at: Google Scholar
  8. F. H. Ali, T. N. Intesar, W. A. Khylood, and A. H. Saad, “Hematopoietic toxicity of Loranthus europaeus chloroform extract: in vitro study,” International Journal of Comprehensive Pharmacy, vol. 17, pp. 345–352, 2005. View at: Google Scholar
  9. P. O. Osadebe, C. C. Abba, and M. O. Agbo, “Antimotility effects of extracts and fractions of Eastern Nigeria mistletoe (Loranthus micranthus Linn),” Asian Pacific Journal of Tropical Medicine, vol. 5, no. 7, pp. 556–560, 2012. View at: Google Scholar
  10. P. O. Osadebe and E. O. Omeje, “Comparative acute toxicities and immunomodulatory potentials of five Eastern Nigeria mistletoes,” Journal of Ethnopharmacology, vol. 126, no. 2, pp. 287–293, 2009. View at: Publisher Site | Google Scholar
  11. B. Oliver-Bever, Medicinal Plants in Tropical West Africa, Cambridge University Press, New York, NY, USA, 1986.
  12. M. O. Agbo, D. Lai, F. B. C. Okoye, P. O. Osadebe, and P. Proksch, “Antioxidative polyphenols from Nigerian mistletoe Loranthus micranthus (Linn.) parasitizing on Hevea brasiliensis,” Fitoterapia, vol. 86, pp. 78–83, 2013. View at: Google Scholar
  13. A. L. Davis, Y. Cai, A. P. Davies, and J. R. Lewis, “ 1 H and 13 C NMR assignments of some green tea polyphenols,” Magnetic Resonance in Chemistry, vol. 34, no. 11, pp. 887–890, 1996. View at: Google Scholar
  14. P. Fan, H. Lou, W. Yu, D. Ren, B. Ma, and M. Ji, “Novel flavanol derivatives from grape seeds,” Tetrahedron Letters, vol. 45, no. 15, pp. 3163–3166, 2004. View at: Publisher Site | Google Scholar
  15. A. Gramza and J. Korczak, “Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems,” Trends in Food Science and Technology, vol. 16, no. 8, pp. 351–358, 2005. View at: Publisher Site | Google Scholar
  16. M. Singh, M. Arseneault, T. Sanderson, V. Murthy, and C. Ramassamy, “Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms,” Journal of Agricultural and Food Chemistry, vol. 56, no. 13, pp. 4855–4873, 2008. View at: Publisher Site | Google Scholar
  17. M. M. Manir, J. K. Kim, B.-G. Lee, and S.-S. Moon, “Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase,” Bioorganic and Medicinal Chemistry, vol. 20, no. 7, pp. 2376–2381, 2012. View at: Publisher Site | Google Scholar
  18. L. Sánchez-del-Campo, F. Otón, A. Tárraga, J. Cabezas-Herrera, S. Chazarra, and J. N. Rodríguez-López, “Synthesis and biological activity of a 3,4,5-trimethoxybenzoyl ester analogue of epicatechin-3-gallate,” Journal of Medicinal Chemistry, vol. 51, no. 7, pp. 2018–2026, 2008. View at: Publisher Site | Google Scholar
  19. O. A. Eldahshan, “Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt,” Current Research Journal of Biological Sciences, vol. 3, pp. 53–55, 2011. View at: Google Scholar
  20. M. Materska and I. Perucka, “Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.),” Journal of Agricultural and Food Chemistry, vol. 53, no. 5, pp. 1750–1756, 2005. View at: Publisher Site | Google Scholar
  21. E. N. Frankel, A. L. Waterhouse, and P. L. Teissedre, “Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins,” Journal of Agricultural and Food Chemistry, vol. 43, no. 4, pp. 890–894, 1995. View at: Google Scholar
  22. E. O. Omeje, O. P. Ogoamaka, A. Kawamura et al., “Three—(−) catechin-o-rhamnosides from the Eastern Nigeria mistletoe with potent immunostimulatory and antioxidant activities,” Biomolecules, vol. 1, no. 1, pp. 1–6, 2012. View at: Google Scholar
  23. E. O. Omeje, P. O. Osadebe, C. O. Esimone, C. S. Nworu, A. Kawamura, and P. Proksch, “Three hydroxylatedlupeol-based triterpenoid esters isolated from the Eastern Nigeria mistletoe parasitic on Kola acuminata,” Natural Product Research, vol. 26, no. 19, pp. 1775–1781, 2012. View at: Google Scholar
  24. O. E. Ogechukwu, O. P. Ogoamaka, N. C. Sylvester et al., “Steroids and triterpenoids from Eastern Nigeria mistletoe, Loranthus micranthus Linn. (Loranthaceae) parasitic on Kola acuminata with immunomodulatory potentials,” Phytochemistry Letters, vol. 4, no. 3, pp. 357–362, 2011. View at: Publisher Site | Google Scholar
  25. P. Osadebe, E. Omeje, A. Kawamura, and F. Okoye, “Lupeol derivatives from the Eastern Nigeria mistletoe, Loranthus micranthus Linn. (Loranthaceae) with enhanced cell proliferative potentials,” Planta Medica, vol. 76, article 091, 2010. View at: Google Scholar
  26. E. Omeje, P. Osadebe, P. Procksh et al., “Immunomodulatory and antioxidant constituents of Eastern Nigeria mistletoe, Loranthus micranthus Linn. (Loranthaceae) parasitic on Cola acuminata Schott et Endl.,” Planta Medica, vol. 76, p. 129, 2010. View at: Google Scholar
  27. E. O. Omeje, P. O. Osadebe, C. S. Nworu et al., “A novel sesquiterpene acid and an alkaloid from leaves of the Eastern Nigeria mistletoe, Loranthus micranthus with potent immunostimulatory activity on C57BL6 mice splenocytes and CD69 molecule,” Pharmaceutical Biology, vol. 49, no. 12, pp. 1271–1276, 2011. View at: Publisher Site | Google Scholar
  28. P. O. Osadebe, E. O. Omeje, S. C. Nworu et al., “Antidiabetic principles of Loranthus micranthus Linn. parasitic on Persea americana,” Asian Pacific Journal of Tropical Medicine, vol. 3, no. 8, pp. 619–623, 2010. View at: Publisher Site | Google Scholar
  29. P. O. Osadebe, E. O. Omeje, P. F. Uzor, E. K. David, and D. C. Obiorah, “Seasonal variation for the antidiabetic activity of Loranthus micranthus methanol extract,” Asian Pacific Journal of Tropical Medicine, vol. 3, no. 3, pp. 196–199, 2010. View at: Publisher Site | Google Scholar
  30. B. A. Iwalokun, S. A. Hodonu, S. Nwoke, O. Ojo, and P. U. Agomo, “Evaluation of the possible mechanisms of antihypertensive activity of Loranthus micranthus: an african mistletoe,” Biochemistry Research International, vol. 2011, Article ID 159439, 9 pages, 2011. View at: Publisher Site | Google Scholar
  31. P. O. Osadebe and S. E. Ukwueze, “A comparative study of the phytochemical and anti-microbial properties of the Eastern Nigerian specie of African Mistletoe (Loranthus micranthus) sourced from different host trees,” Bio-Research, vol. 2, no. 1, pp. 18–23, 2004. View at: Google Scholar
  32. P. O. Osadebe, G. B. Okide, and I. C. Akabogu, “Study on anti-diabetic activities of crude methanolic extracts of Loranthus micranthus (Linn.) sourced from five different host trees,” Journal of Ethnopharmacology, vol. 95, no. 2-3, pp. 133–138, 2004. View at: Publisher Site | Google Scholar
  33. P. O. Osadebe, C. A. Dieke, and F. B. C. Okoye, “A study of the seasonal variation in the antimicrobial constituents of the leaves of Loranthus micranthus sourced from Percia americana,” Planta Medica, vol. 73, pp. 205–210, 2007. View at: Google Scholar
  34. L. M. Perry and J. Metzger, Medicinal Plants of East and South East Asia: Attributed Properties and Uses, MIT Press, Cambridge, Mass, USA, 1980.
  35. D. O. Edem and I. F. Usoh, “Biochemical changes in Wistar rats on oral doses of mistletoe (Loranthus micranthus),” American Journal of Pharmacology and Toxicology, vol. 4, no. 3, pp. 94–97, 2009. View at: Publisher Site | Google Scholar
  36. B. A. Iwalokun, A. O. Oyenuga, G. M. Saibu GM, and J. Ayorinde, “Analyses of cytotoxic and genotoxic potentials of Loranthus micranthus using the Allium cepa test,” Current Research Journal of Biological Sciences, vol. 3, no. 5, pp. 459–467, 2011. View at: Google Scholar
  37. H. M. Kim, S. B. Han, G. T. Oh et al., “Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus,” International Journal of Immunopharmacology, vol. 18, no. 5, pp. 295–303, 1996. View at: Publisher Site | Google Scholar
  38. C. K. Ameho, A. A. Adjei, K. Yamauchi et al., “Modulation of age-related changes in immune functions of protein-deficient senescence-accelerated mice by dietary nucleoside-nucleotide mixture supplementation,” British Journal of Nutrition, vol. 77, no. 5, pp. 795–804, 1997. View at: Publisher Site | Google Scholar
  39. L. A. Ande, “Mistletoe: the magic herb,” Pharmacology Journal, vol. 229, pp. 437–439, 1982. View at: Google Scholar
  40. E. Juanita, “Mistletoe: good for more than free kisses,” Journal of American Botanical Council, vol. 68, pp. 50–59, 2005. View at: Google Scholar
  41. P. O. Osadebe and E. O. Omeje, “Isolation and characterisation of antiviral and immunomodulatory constituents from Nigerian mistletoe, Loranthus micranthus,” Planta Medica, vol. 73, p. 108, 2007. View at: Google Scholar
  42. P. O. Osadebe and E. O. Omeje, “Immunomodulatory activities of n-hexane and methanol extracts of Loranthus micranthus Linn. parasitic on Parkia biglobosa,” Planta Medica, vol. 74, article 217, 2008. View at: Google Scholar
  43. P. O. Osadebe and E. O. Omeje, “Preliminary fractionation indicates that flavonoids, steroids and terpenoids are the main immunomodulatory constituents of Loranthus micranthus (Linn),” Planta Medica, vol. 75, article 78, 2009. View at: Google Scholar
  44. O. E. Ogechukwu, O. P. Ogoamaka, N. C. Sylvester, A. Kawamura, and P. Proksch, “Immunomodulatory activity of a lupane triterpenoid ester isolated from the eastern Nigeria mistletoe, Loranthus micranthus (Linn),” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 7, pp. 514–522, 2011. View at: Publisher Site | Google Scholar
  45. S. H. Lee and Y. J. Jeon, “Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms,” Fitoterapia, vol. 86, pp. 129–136, 2013. View at: Google Scholar
  46. R. A. DeFronzo, “Pharmacologic therapy for type 2 diabetes mellitus,” Annals of Internal Medicine, vol. 131, no. 4, pp. 281–303, 1999. View at: Google Scholar
  47. I. C. Uzochukwu and P. O. Osadeb, “Comparative evaluation of antidiabetic activities of flavonoids extract and crude methanol extract of Loranthus micranthus parasitic on Kola acuminata,” Journal of Pharmaceutical and Allied Sciences, vol. 4, no. 1, pp. 2–7, 2007. View at: Google Scholar
  48. Z. J. Wang, Z. Q. Yang, T. N. Huang, L. Wen, and Y. W. Liu, “Experimental research on inhibitory effect of alcohol extracts from Loranthus yadoriki Sieb. on coxsackie B3 virus,” Zhongguo Zhong Yao Za Zhi, vol. 25, no. 11, pp. 685–687, 2000. View at: Google Scholar
  49. Y.-K. Kim, S. K. Young, U. C. Sang, and Y. R. Shi, “Isolation of flavonol rhamnosides from Loranthus tanakae and cytotoxic effect of them on human tumor cell lines,” Archives of Pharmacal Research, vol. 27, no. 1, pp. 44–47, 2004. View at: Google Scholar
  50. O. Z. Ameer, I. M. Salman, M. J. A. Siddiqui et al., “Characterization of the possible mechanisms underlying the hypotensive and spasmogenic effects of Loranthus ferrugineus methanolic extract,” American Journal of Chinese Medicine, vol. 37, no. 5, pp. 991–1008, 2009. View at: Publisher Site | Google Scholar
  51. P. Abirami, M. Gomathinayagam, and R. Panneerselvam, “Preliminary study on the antimicrobial activity of Enicostemma littorale using different solvents,” Asian Pacific Journal of Tropical Medicine, vol. 5, no. 7, pp. 552–555, 2012. View at: Google Scholar
  52. P. O. Osadebe and I. C. Akabogu, “Antimicrobial activity of Loranthus micranthus harvested from kola nut tree,” Fitoterapia, vol. 77, no. 1, pp. 54–56, 2006. View at: Publisher Site | Google Scholar
  53. E. A. C. Cemaluk and N. N. Emeka, “Phytochemical properties of some solvent fractions of petroleum ether extract of the African mistletoe (Loranthus micranthus Linn) leaves and their antimicrobial activity,” African Journal of Biotechnology, vol. 11, no. 62, pp. 12595–12599, 2012. View at: Google Scholar
  54. P. O. Osadebe, C. A. Dieke, and F. B. C. Okoye, “A study of the seasonal variation in the antimicrobial constituents of the leaves of Loranthus micranthus sourced from Percia americana,” Research Journal of Medicinal Plant, vol. 2, no. 1, pp. 48–52, 2008. View at: Google Scholar
  55. S. E. Ukwueze and P. O. Osadebe, “Determination of anti-fungal properties of the african mistletoe species: Loranthus micranthus L.,” International Journal of Pharma and Bio Sciences, vol. 3, no. 1, pp. 454–458, 2012. View at: Google Scholar
  56. S. E. Ukwueze, P. O. Osadebe, and N. O. Ezenobi, “Bioassay-guided evaluation of the antibacterial activity of Loranthus species of the African mistletoe,” International Journal of Pharmaceutical and Biomedical Research, vol. 4, no. 2, pp. 79–82, 2013. View at: Google Scholar
  57. J. Fry, “Deaths and complications from hypertension,” Journal of the Royal College of General Practitioners, vol. 25, no. 156, pp. 489–494, 1975. View at: Google Scholar
  58. P. A. Meredith, “Candesartan cilexetil𠅊 review of effects on cardiovascular complications in hypertension and chronic heart failure,” Current Medical Research and Opinion, vol. 23, no. 7, pp. 1693–1705, 2007. View at: Publisher Site | Google Scholar
  59. G. Y. Yeh, D. M. Eisenberg, T. J. Kaptchuk, and R. S. Phillips, “Systematic review of herbs and dietary supplements for glycemic control in diabetes,” Diabetes Care, vol. 26, no. 4, pp. 1277–1294, 2003. View at: Publisher Site | Google Scholar
  60. O. C. Amira and N. U. Okubadejo, “Frequency of complementary and alternative medicine utilization in hypertensive patients attending an urban tertiary care centre in Nigeria,” BMC Complementary and Alternative Medicine, vol. 7, article 30, 2007. View at: Publisher Site | Google Scholar
  61. D. K. Obatomi, V. O. Aina, and V. J. Temple, “Effects of African mistletoe extract on blood pressure in spontaneously hypertensive rats,” Pharmaceutical Biology, vol. 34, no. 2, pp. 124–127, 1996. View at: Google Scholar
  62. C. Demougeot, A. Prigent-Tessier, C. Marie, and A. Berthelot, “Arginase inhibition reduces endothelial dysfunction and blood pressure rising in spontaneously hypertensive rats,” Journal of Hypertension, vol. 23, no. 5, pp. 971–978, 2005. View at: Google Scholar
  63. J. G. Umans and R. Levi, “Nitric oxide in the regulation of blood flow and arterial pressure,” Annual Review of Physiology, vol. 57, pp. 771–790, 1995. View at: Google Scholar
  64. C.-C. Wu and M.-H. Yen, “Higher level of plasma nitric oxide in spontaneously hypertensive rats,” American Journal of Hypertension, vol. 12, no. 5, pp. 476–482, 1999. View at: Publisher Site | Google Scholar
  65. O. I. Aruoma, “Free radicals, oxidative stress, and antioxidants in human health and disease,” Journal of the American Oil Chemists' Society, vol. 75, no. 2, pp. 199–212, 1998. View at: Google Scholar
  66. M. K. Zainol, A. Abd-Hamid, S. Yusof, and R. Muse, “Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban,” Food Chemistry, vol. 81, no. 4, pp. 575–581, 2003. View at: Publisher Site | Google Scholar
  67. G. F. Longstreth, W. G. Thompson, W. D. Chey, L. A. Houghton, F. Mearin, and R. C. Spiller, “Functional bowel disorder,” Gastroenterology, vol. 130, no. 5, pp. 1480–1491, 2006. View at: Publisher Site | Google Scholar
  68. N. Venkatesan, V. Thiyagarajan, S. Narayanan et al., “Anti-diarrhoeal potential of Asparagus racemosus wild root extracts in laboratory animals,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 1, pp. 39–45, 2005. View at: Google Scholar
  69. J. D. Gale, “The use of novel promotility and prosecretory agents for the treatment of chronic idiopathic constipation and irritable bowel syndrome with constipation,” Advances in Therapy, vol. 26, no. 5, pp. 519–530, 2009. View at: Publisher Site | Google Scholar
  70. S. Rajan, H. Suganya, T. Thirunalasundari, and S. Jeeva, “Antidiarrhoeal efficacy of Mangifera indica seed kernel on Swiss albino mice,” Asian Pacific Journal of Tropical Medicine, vol. 5, no. 8, pp. 630–633, 2012. View at: Google Scholar

Copyright

Copyright © 2013 Soheil Zorofchian Moghadamtousi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Journal of the Forestry Society of Croatia = Zeitschrift des Kroatischen Forstvereins = Revue de la Societe forestiere Croate, Vol. 130 No. 3-4, 2006

Marilena Idžojtić Šumarski fakultet Sveučilišta u Zagrebu
Milan Glavaš Šumarski fakultet Sveučilišta u Zagrebu
Marko Zebec Šumarski fakultet Sveučilišta u Zagrebu
Renata Pernar Šumarski fakultet Sveučilišta u Zagrebu
Branko Bradić Hrvatske šume, UŠP Bjelovar
Dražen Husak Hrvatske šume, UŠP Bjelovar

Fulltext: croatian, pdf (2 MB) pages 101-110 downloads: 592* cite
APA 6th Edition
Idžojtić, M., Glavaš, M., Zebec, M., Pernar, R., Bradić, B. & Husak, D. (2006). Žuta imela (Loranthus europaeus Jacq.) i bijela imela (Viscum album L.) na području Uprave šuma podružnice Bjelovar. Šumarski list, 130 (3-4), 101-110. Retrieved from https://hrcak.srce.hr/42704 MLA 8th Edition
Idžojtić, Marilena, et al. "Žuta imela (Loranthus europaeus Jacq.) i bijela imela (Viscum album L.) na području Uprave šuma podružnice Bjelovar." Šumarski list, vol. 130, no. 3-4, 2006, pp. 101-110. https://hrcak.srce.hr/42704. Accessed 27 Jun. 2021. Chicago 17th Edition
Idžojtić, Marilena, Milan Glavaš, Marko Zebec, Renata Pernar, Branko Bradić and Dražen Husak. "Žuta imela (Loranthus europaeus Jacq.) i bijela imela (Viscum album L.) na području Uprave šuma podružnice Bjelovar." Šumarski list 130, no. 3-4 (2006): 101-110. https://hrcak.srce.hr/42704 Harvard
Idžojtić, M., et al. (2006). 'Žuta imela (Loranthus europaeus Jacq.) i bijela imela (Viscum album L.) na području Uprave šuma podružnice Bjelovar', Šumarski list, 130(3-4), pp. 101-110. Available at: https://hrcak.srce.hr/42704 (Accessed 27 June 2021) Vancouver
Idžojtić M, Glavaš M, Zebec M, Pernar R, Bradić B, Husak D. Žuta imela (Loranthus europaeus Jacq.) i bijela imela (Viscum album L.) na području Uprave šuma podružnice Bjelovar. Šumarski list [Internet]. 2006 [cited 2021 June 27]130(3-4):101-110. Available from: https://hrcak.srce.hr/42704 IEEE
M. Idžojtić, M. Glavaš, M. Zebec, R. Pernar, B. Bradić and D. Husak, "Žuta imela (Loranthus europaeus Jacq.) i bijela imela (Viscum album L.) na području Uprave šuma podružnice Bjelovar", Šumarski list, vol.130, no. 3-4, pp. 101-110, 2006. [Online]. Available: https://hrcak.srce.hr/42704. [Accessed: 27 June 2021]

Abstracts
Na području Uprave šuma podružnice Bjelovar istražena je zaraza hrastova kitnjaka (Quercus petraea /Matt./ Liebl.) i lužnjaka (Q. robur L.) žutom imelom (Loranthus europaeus Jacq.), te zaraza bijele topole (Populus alba L.), običnog bagrema (Robinia pseudoacacia L.) i kitnjaka bijelom imelom (Viscum album L.). Istraživanje je provedeno u izabranim odsjecima starijima od 30 godina u kojima je dijagonalnim pregledom evidentiran broj zaraženih i nezaraženih stabala, te broj grmova imele na zaraženim stablima.
Na kitnjaku žuta imela praćena je na području sedam šumarija: Bjelovar, Garešnica, Sirač, Virovitica, Pakrac, Suhopolje i Vrbovec. Ukupno je pregledano 9 gospodarskih jedinica, 144 odjela i 13.971 stablo, od kojih je 3 % na sebi imalo imelu. Prosječno je na zaraženim stablima bilo 2 grma imele, a najveći broj grmova ne jednom stablu bio je 17. Žuta imela praćena je na lužnjaku na području osam šumarija: Bjelovar, Čazma, Garešnica, Grubišno Polje, Suhopolje, Velika Pisanica, Veliki Grđevac i Vrbovec. Istraživanje je provedeno u 19 gospodarskih jedinica i 173 odjela, na uzorku od 12.711 stabala. Od ukupnog broja pregledanih stabala 7 % bilo je zaraženo imelom. Na zaraženim stablima prosječno je bilo 3 grma imele, a najveći broj na jednom stablu bio je 22. Intenzitet zaraze bio je različit po šumarijama, odnosno gospodarskim jedinicama.
Bijela imela zabilježena je na 36 % pregledanih stabala bijele topole (Šumarija Virovitica), na 12 % pregledanih stabala običnog bagrema (Šumarija Bjelovar) te na 2,4 % pregledanih stabala kitnjaka (Šumarija Garešnica). Pridolazak bijele imele na autohtonim europskim hrastovima vrlo je rijedak i to je do sada jedini zabilježeni lokalitet u Hrvatskoj.
Za hrastove kitnjak i lužnjak analizirana je povezanost pridolaska žute imele sa stanišnim i sastojinskim parametrima: bonitetom, ekspozicijom, tlom, starošću, sklopom i srednjom nadmorskom visinom. Utvrđena je pozitivna korelacija starosti stabala i zaraze imelom, te negativna korelacija nadmorske visine i zaraze žutom imelom. Na zarazu utječe i gustoća sklopa te su odsjeci s vrlo gustim i gustim sklopom značajno manje zaraženi od odsjeka s nepotpunim i prekinutim sklopom.
Prikazana je prostorna raspodjela intenziteta zaraze kitnjaka i lužnjaka žutom imelom u pojedinim gospodarskim jedinicama.


Euonymus europaeus

Plant heights are relevant for the Czech Republic. They are measured in metres and relate to fully developed mature generative plants growing in the wild. Each taxon is characterized by two values: minimum (lower limit of the common range) and maximum (upper limit of the common range). The data were taken from the Key to the Flora of the Czech Republic (Kaplan et al. 2019).

Data source and citation

Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.

Growth form

Growth form describes the potential life span of the plant and its parts (ramets), its reproductive strategy and durability of its aboveground parts (Klimešová et al. 2016, Ottaviani et al. 2017). Here the growth form is classified into nine categories, which also consider herbaceous vs woody nature of the stem. Annual herbs live for one season only and reproduce by seed usually in the same season in which they germinated. They may but need not be clonal their clonality typically does not result in fragmentation. Perennial herbs are divided into three categories: (i) monocarpic perennial non-clonal herbs, which reproduce sexually only once in their life and do not possess woody aboveground parts or organs of clonal growth, (ii) polycarpic perennial non-clonal herbs, which reproduce sexually several times during their life and do not possess organs of clonal growth, and (iii) clonal herbs, which possess organs of clonal growth enabling them to make fragments during their life and to form independent units (ramets) by vegetative reproduction the whole plant reproduces sexually several times during its life, while individual ramets may reproduce once or several times during their life. The other categories include woody plants, which may but need not possess organs of clonal growth and may be able or not of fragmentation and vegetative reproduction. The woody plants are divided into dwarf shrubs (woody plants lower than 30 cm, also including suffruticose plants with erect, herbaceous shoots growing from woody stems at the base, which die out in autumn except for the lowest part with regenerative buds), shrubs (woody plants higher than 30 cm, branched at the base), trees (woody plants with trunk and crown), woody lianas and parasitic epiphytes, which include only two species of the Czech flora, Loranthus europaeus and Viscum album.

Data were partly taken from the aggregated CLO-PLA 3.4 database (Klimešová et al. 2017). The CLO-PLA categories were further divided into separate categories for herbaceous vs woody plants, and taxa not included in CLO-PLA were added.

Categories

  • annual herb
  • monocarpic perennial non-clonal herb
  • polycarpic perennial non-clonal herb
  • clonal herb
  • dwarf shrub
  • shrub
  • tree
  • woody liana
  • parasitic epiphyte

Data source and citation

Dřevojan P. (2020) Growth form. – www.pladias.cz.

Further references

Klimešová J., Nobis M. P. & Herben T. (2016) Links between shoot and plant longevity and plant economics spectrum: Environmental and demographic implications. – Perspectives in Plant Ecology, Evolution and Systematics 22: 55–62.
Klimešová J., Danihelka J., Chrtek J., de Bello F. & Herben T. (2017) CLO-PLA: a database of clonal and budbank traits of the Central European flora. – Ecology 98: 1179.
Ottaviani G., Martínková J., Herben T., Pausas J. G. & Klimešová J. (2017) On plant modularity traits: functions and challenges. – Trends in Plant Science 22: 648–651.

Life form

Life form classification follows the system of Raunkiaer (1934), which is based on the position of the buds that survive the unfavourable season. Macrophanerophytes are woody plants that bear the surviving buds at least 2 m above the ground, usually trees nanophanerophytes are woody plants with surviving buds 0.3–2 m above the ground, usually shrubs chamaephytes are herbs or low woody plants with surviving buds above the ground, but not more than 30 cm above it hemicryptophytes are perennial or biennial herbs with surviving buds on aboveground shoots at the level of the ground geophytes are perennial plants with surviving buds belowground, usually with bulbs, tubers or rhizomes hydrophytes are plants with surviving buds in water, usually on the bottom of water bodies therophytes are summer- or winter-annual herbs that survive the unfavourable season only as seeds germinating in autumn, winter or spring.

The data on life forms were taken from the Key to the Flora of the Czech Republic (Kaplan et al. 2019). Some taxa can belong to more than one life form. In such cases, the dominant life form is listed first.

Categories

  • macrophanerophyte
  • nanophanerophyte
  • chamaephyte
  • hemicryptophyte
  • geophyte
  • hydrophyte
  • therophyte

Data source and citation

Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.

Further references

Raunkiaer C. (1934) The life forms of plants and statistical plant geography. – Clarendon Press, Oxford.

Life strategy

Grime (1974, 1979) distinguished three basic ecological strategies of plants: competitive strategy (C), advantageous in habitats where resources are abundant, conditions not extreme and disturbance level is low stress tolerant strategy (S), advantageous where resources are scarce, conditions severe, but disturbance is uncommon and ruderal strategy (R), advantageous where resources are abundant and conditions not extreme, but disturbance level is high. There are also intermediate strategies in all possible combinations of the three basic types (CR, CS, SR, CSR). Data were taken from the BiolFlor database (Klotz & Kühn 2002).

Categories

  • C &ndash competitor
  • CR &ndash competitor/ruderal
  • CS &ndash competitor/stress-tolerator
  • CSR &ndash competitor/stress-tolerator/ruderal
  • R &ndash ruderal
  • S &ndash stress-tolerator
  • SR &ndash stress-tolerator/ruderal

Data source and citation

Klotz S. & Kühn I. (2002) Ökologische Strategietypen. – In: Klotz S., Kühn I. & Durka W. (eds), BIOLFLOR: eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, Schriftenreihe für Vegetationskunde 38: 119–126.

Further references

Grime J. P. (1974) Vegetation classification by reference to strategies. – Nature 250: 26–31.
Grime J. P. (1979) Plant strategies and vegetation processes. – Wiley, Chichester.

Life strategy (Pierce method based on leaf traits)

Grime (1974, 1979) distinguished three basic ecological strategies of plants: (i) competitive strategy (C), advantageous in stable habitats where resources are abundant, conditions not extreme and the disturbance level low (ii) stress-tolerant strategy (S), advantageous where resources are scarce, conditions severe and highly variable, but disturbance is uncommon and (iii) ruderal strategy (R), advantageous where resources are abundant and conditions not extreme, but the disturbance frequency is high.

Taxa of the Czech flora were assigned to life strategies based on the method proposed by Pierce et al. (2017). The life strategies calculated using this method represent the trade-off in resource investment between three key leaf traits: leaf area (LA high in competitive taxa), leaf dry matter content (LDMC high in stress-tolerant taxa) and specific leaf area (SLA high in ruderal taxa). Scores that express the degree of C-, S- and R-selection are calculated from these traits. These scores are expressed on a percentage scale, and the sum of the three scores for individual taxa is 100%. Based on these scores, the taxa are assigned to the basic primary strategies C, S and R, intermediate strategies CS, CR, SR and CSR, and transitions between them, e.g. C/CS or SR/CSR (sensu Grime 1979). The data on leaf traits for these calculations or calculated values were taken from the LEDA database (Kleyer et al. 2008) and some other sources (Bjorkman et al. 2018, Dayrell et al. 2018, Findurová 2018, Tavşanoğlu & Pausas 2018, Wang et al. 2018, Guo et al. 2019). The Pladias database contains both the score values for the three categories C, S, R and the categorized life strategies.

Categories

  • C
  • C/CR
  • C/CS
  • C/CSR
  • CR
  • CR/CSR
  • CS
  • CS/CSR
  • CSR
  • R
  • R/CR
  • R/CSR
  • R/SR
  • S
  • S/CS
  • S/CSR
  • S/SR
  • SR
  • SR/CSR

Data source and citation

Guo W.-Y. & Pierce S. (2019) Life strategy. – www.pladias.cz.

Further references

Bjorkman A. D., Myers-Smith I. H., Elmendorf S. C. et al. (2018) Tundra Trait Team: A database of plant traits spanning the tundra biome. – Global Ecology and Biogeography 27: 1402–1411.
Dayrell R. L., Arruda A. J., Pierce S., Negreiros D., Meyer P. B., Lambers H. & Silveira F. A. (2018) Ontogenetic shifts in plant ecological strategies. – Functional Ecology 32: 2730–2741.
Findurová A. (2018) Variabilita listových znaků SLA a LDMC vybraných druhů rostlin České republiky [Variability of leaf traits SLA and LDMC in selected species of the Czech flora]. – Master thesis, Masaryk University, Brno.
Grime J. P. (1974) Vegetation classification by reference to strategies. – Nature 250: 26–31.
Grime J. P. (1979) Plant strategies and vegetation processes. – Wiley, Chichester.
Kleyer M., Bekker R. M., Knevel I. C., Bakker J. P., Thompson K., Sonnenschein M., Poschlod P., van Groenendael J. M., Klimeš L., Klimešová J., Klotz S., Rusch G. M., Hermy M., Adriaens D., Boedeltje G., Bossuyt B., Dannemann A., Endels P., Götzenberger L., Hodgson J. G., Jackel A. K., Kühn I., Kunzmann D., OzingaW. A., Romermann C., Stadler M., Schlegelmilch J., Steendam H. J., Tackenberg O., Wilmann B., Cornelissen J. H. C., Eriksson O., Garnier E. & Peco B. (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. – Journal of Ecology 96: 1266–1274.
Pierce S., Negreiros D., Cerabolini B. E. L., Kattge J., Díaz S., Kleyer M., Shipley B., Wright S. J., Soudzilovskaia N. A., Onipchenko V. G., van Bodegom P. M., Frenette-Dussault C., Weiher E., Pinho B. X., Cornelissen J. H. C., Grime J. P., Thompson K., Hunt R., Wilson P. J., Buffa G., Nyakunga O. C., Reich P. B., CaccianigaM., Mangili F., Ceriani R. M., Luzzaro A., Brusa G., Siefert A., Barbosa N. P. U., Chapin F. S., Cornwell W. K., Fang J., Fernandes G. W., Garnier E., Le Stradic S., Peńuelas J., Melo F. P. L., Slaviero A., Tabarelli M. & Tampucci D. (2017) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. – Functional Ecology 31: 444–457.
Tavşanoğlu Ç. & Pausas J. G. (2018) A functional trait database for Mediterranean Basin plants. – Scientific Data 5: 180135.

Life strategy (Pierce method, C-score)

Grime (1974, 1979) distinguished three basic ecological strategies of plants: (i) competitive strategy (C), advantageous in stable habitats where resources are abundant, conditions not extreme and the disturbance level low (ii) stress-tolerant strategy (S), advantageous where resources are scarce, conditions severe and highly variable, but disturbance is uncommon and (iii) ruderal strategy (R), advantageous where resources are abundant and conditions not extreme, but the disturbance frequency is high.

Taxa of the Czech flora were assigned to life strategies based on the method proposed by Pierce et al. (2017). The life strategies calculated using this method represent the trade-off in resource investment between three key leaf traits: leaf area (LA high in competitive taxa), leaf dry matter content (LDMC high in stress-tolerant taxa) and specific leaf area (SLA high in ruderal taxa). Scores that express the degree of C-, S- and R-selection are calculated from these traits. These scores are expressed on a percentage scale, and the sum of the three scores for individual taxa is 100%. Based on these scores, the taxa are assigned to the basic primary strategies C, S and R, intermediate strategies CS, CR, SR and CSR, and transitions between them, e.g. C/CS or SR/CSR (sensu Grime 1979). The data on leaf traits for these calculations or calculated values were taken from the LEDA database (Kleyer et al. 2008) and some other sources (Bjorkman et al. 2018, Dayrell et al. 2018, Findurová 2018, Tavşanoğlu & Pausas 2018, Wang et al. 2018, Guo et al. 2019). The Pladias database contains both the score values for the three categories C, S, R and the categorized life strategies.

Data source and citation

Guo W.-Y. & Pierce S. (2019) Life strategy. – www.pladias.cz.

Further references

Bjorkman A. D., Myers-Smith I. H., Elmendorf S. C. et al. (2018) Tundra Trait Team: A database of plant traits spanning the tundra biome. – Global Ecology and Biogeography 27: 1402–1411.
Dayrell R. L., Arruda A. J., Pierce S., Negreiros D., Meyer P. B., Lambers H. & Silveira F. A. (2018) Ontogenetic shifts in plant ecological strategies. – Functional Ecology 32: 2730–2741.
Findurová A. (2018) Variabilita listových znaků SLA a LDMC vybraných druhů rostlin České republiky [Variability of leaf traits SLA and LDMC in selected species of the Czech flora]. – Master thesis, Masaryk University, Brno.
Grime J. P. (1974) Vegetation classification by reference to strategies. – Nature 250: 26–31.
Grime J. P. (1979) Plant strategies and vegetation processes. – Wiley, Chichester.
Kleyer M., Bekker R. M., Knevel I. C., Bakker J. P., Thompson K., Sonnenschein M., Poschlod P., van Groenendael J. M., Klimeš L., Klimešová J., Klotz S., Rusch G. M., Hermy M., Adriaens D., Boedeltje G., Bossuyt B., Dannemann A., Endels P., Götzenberger L., Hodgson J. G., Jackel A. K., Kühn I., Kunzmann D., OzingaW. A., Romermann C., Stadler M., Schlegelmilch J., Steendam H. J., Tackenberg O., Wilmann B., Cornelissen J. H. C., Eriksson O., Garnier E. & Peco B. (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. – Journal of Ecology 96: 1266–1274.
Pierce S., Negreiros D., Cerabolini B. E. L., Kattge J., Díaz S., Kleyer M., Shipley B., Wright S. J., Soudzilovskaia N. A., Onipchenko V. G., van Bodegom P. M., Frenette-Dussault C., Weiher E., Pinho B. X., Cornelissen J. H. C., Grime J. P., Thompson K., Hunt R., Wilson P. J., Buffa G., Nyakunga O. C., Reich P. B., CaccianigaM., Mangili F., Ceriani R. M., Luzzaro A., Brusa G., Siefert A., Barbosa N. P. U., Chapin F. S., Cornwell W. K., Fang J., Fernandes G. W., Garnier E., Le Stradic S., Peńuelas J., Melo F. P. L., Slaviero A., Tabarelli M. & Tampucci D. (2017) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. – Functional Ecology 31: 444–457.
Tavşanoğlu Ç. & Pausas J. G. (2018) A functional trait database for Mediterranean Basin plants. – Scientific Data 5: 180135.

Life strategy (Pierce method, S-score)

Grime (1974, 1979) distinguished three basic ecological strategies of plants: (i) competitive strategy (C), advantageous in stable habitats where resources are abundant, conditions not extreme and the disturbance level low (ii) stress-tolerant strategy (S), advantageous where resources are scarce, conditions severe and highly variable, but disturbance is uncommon and (iii) ruderal strategy (R), advantageous where resources are abundant and conditions not extreme, but the disturbance frequency is high.

Taxa of the Czech flora were assigned to life strategies based on the method proposed by Pierce et al. (2017). The life strategies calculated using this method represent the trade-off in resource investment between three key leaf traits: leaf area (LA high in competitive taxa), leaf dry matter content (LDMC high in stress-tolerant taxa) and specific leaf area (SLA high in ruderal taxa). Scores that express the degree of C-, S- and R-selection are calculated from these traits. These scores are expressed on a percentage scale, and the sum of the three scores for individual taxa is 100%. Based on these scores, the taxa are assigned to the basic primary strategies C, S and R, intermediate strategies CS, CR, SR and CSR, and transitions between them, e.g. C/CS or SR/CSR (sensu Grime 1979). The data on leaf traits for these calculations or calculated values were taken from the LEDA database (Kleyer et al. 2008) and some other sources (Bjorkman et al. 2018, Dayrell et al. 2018, Findurová 2018, Tavşanoğlu & Pausas 2018, Wang et al. 2018, Guo et al. 2019). The Pladias database contains both the score values for the three categories C, S, R and the categorized life strategies.

Data source and citation

Guo W.-Y. & Pierce S. (2019) Life strategy. – www.pladias.cz.

Further references

Bjorkman A. D., Myers-Smith I. H., Elmendorf S. C. et al. (2018) Tundra Trait Team: A database of plant traits spanning the tundra biome. – Global Ecology and Biogeography 27: 1402–1411.
Dayrell R. L., Arruda A. J., Pierce S., Negreiros D., Meyer P. B., Lambers H. & Silveira F. A. (2018) Ontogenetic shifts in plant ecological strategies. – Functional Ecology 32: 2730–2741.
Findurová A. (2018) Variabilita listových znaků SLA a LDMC vybraných druhů rostlin České republiky [Variability of leaf traits SLA and LDMC in selected species of the Czech flora]. – Master thesis, Masaryk University, Brno.
Grime J. P. (1974) Vegetation classification by reference to strategies. – Nature 250: 26–31.
Grime J. P. (1979) Plant strategies and vegetation processes. – Wiley, Chichester.
Kleyer M., Bekker R. M., Knevel I. C., Bakker J. P., Thompson K., Sonnenschein M., Poschlod P., van Groenendael J. M., Klimeš L., Klimešová J., Klotz S., Rusch G. M., Hermy M., Adriaens D., Boedeltje G., Bossuyt B., Dannemann A., Endels P., Götzenberger L., Hodgson J. G., Jackel A. K., Kühn I., Kunzmann D., OzingaW. A., Romermann C., Stadler M., Schlegelmilch J., Steendam H. J., Tackenberg O., Wilmann B., Cornelissen J. H. C., Eriksson O., Garnier E. & Peco B. (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. – Journal of Ecology 96: 1266–1274.
Pierce S., Negreiros D., Cerabolini B. E. L., Kattge J., Díaz S., Kleyer M., Shipley B., Wright S. J., Soudzilovskaia N. A., Onipchenko V. G., van Bodegom P. M., Frenette-Dussault C., Weiher E., Pinho B. X., Cornelissen J. H. C., Grime J. P., Thompson K., Hunt R., Wilson P. J., Buffa G., Nyakunga O. C., Reich P. B., CaccianigaM., Mangili F., Ceriani R. M., Luzzaro A., Brusa G., Siefert A., Barbosa N. P. U., Chapin F. S., Cornwell W. K., Fang J., Fernandes G. W., Garnier E., Le Stradic S., Peńuelas J., Melo F. P. L., Slaviero A., Tabarelli M. & Tampucci D. (2017) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. – Functional Ecology 31: 444–457.
Tavşanoğlu Ç. & Pausas J. G. (2018) A functional trait database for Mediterranean Basin plants. – Scientific Data 5: 180135.

Life strategy (Pierce method, R-score)

Grime (1974, 1979) distinguished three basic ecological strategies of plants: (i) competitive strategy (C), advantageous in stable habitats where resources are abundant, conditions not extreme and the disturbance level low (ii) stress-tolerant strategy (S), advantageous where resources are scarce, conditions severe and highly variable, but disturbance is uncommon and (iii) ruderal strategy (R), advantageous where resources are abundant and conditions not extreme, but the disturbance frequency is high.

Taxa of the Czech flora were assigned to life strategies based on the method proposed by Pierce et al. (2017). The life strategies calculated using this method represent the trade-off in resource investment between three key leaf traits: leaf area (LA high in competitive taxa), leaf dry matter content (LDMC high in stress-tolerant taxa) and specific leaf area (SLA high in ruderal taxa). Scores that express the degree of C-, S- and R-selection are calculated from these traits. These scores are expressed on a percentage scale, and the sum of the three scores for individual taxa is 100%. Based on these scores, the taxa are assigned to the basic primary strategies C, S and R, intermediate strategies CS, CR, SR and CSR, and transitions between them, e.g. C/CS or SR/CSR (sensu Grime 1979). The data on leaf traits for these calculations or calculated values were taken from the LEDA database (Kleyer et al. 2008) and some other sources (Bjorkman et al. 2018, Dayrell et al. 2018, Findurová 2018, Tavşanoğlu & Pausas 2018, Wang et al. 2018, Guo et al. 2019). The Pladias database contains both the score values for the three categories C, S, R and the categorized life strategies.

Data source and citation

Guo W.-Y. & Pierce S. (2019) Life strategy. – www.pladias.cz.

Further references

Bjorkman A. D., Myers-Smith I. H., Elmendorf S. C. et al. (2018) Tundra Trait Team: A database of plant traits spanning the tundra biome. – Global Ecology and Biogeography 27: 1402–1411.
Dayrell R. L., Arruda A. J., Pierce S., Negreiros D., Meyer P. B., Lambers H. & Silveira F. A. (2018) Ontogenetic shifts in plant ecological strategies. – Functional Ecology 32: 2730–2741.
Findurová A. (2018) Variabilita listových znaků SLA a LDMC vybraných druhů rostlin České republiky [Variability of leaf traits SLA and LDMC in selected species of the Czech flora]. – Master thesis, Masaryk University, Brno.
Grime J. P. (1974) Vegetation classification by reference to strategies. – Nature 250: 26–31.
Grime J. P. (1979) Plant strategies and vegetation processes. – Wiley, Chichester.
Kleyer M., Bekker R. M., Knevel I. C., Bakker J. P., Thompson K., Sonnenschein M., Poschlod P., van Groenendael J. M., Klimeš L., Klimešová J., Klotz S., Rusch G. M., Hermy M., Adriaens D., Boedeltje G., Bossuyt B., Dannemann A., Endels P., Götzenberger L., Hodgson J. G., Jackel A. K., Kühn I., Kunzmann D., OzingaW. A., Romermann C., Stadler M., Schlegelmilch J., Steendam H. J., Tackenberg O., Wilmann B., Cornelissen J. H. C., Eriksson O., Garnier E. & Peco B. (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. – Journal of Ecology 96: 1266–1274.
Pierce S., Negreiros D., Cerabolini B. E. L., Kattge J., Díaz S., Kleyer M., Shipley B., Wright S. J., Soudzilovskaia N. A., Onipchenko V. G., van Bodegom P. M., Frenette-Dussault C., Weiher E., Pinho B. X., Cornelissen J. H. C., Grime J. P., Thompson K., Hunt R., Wilson P. J., Buffa G., Nyakunga O. C., Reich P. B., CaccianigaM., Mangili F., Ceriani R. M., Luzzaro A., Brusa G., Siefert A., Barbosa N. P. U., Chapin F. S., Cornwell W. K., Fang J., Fernandes G. W., Garnier E., Le Stradic S., Peńuelas J., Melo F. P. L., Slaviero A., Tabarelli M. & Tampucci D. (2017) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. – Functional Ecology 31: 444–457.
Tavşanoğlu Ç. & Pausas J. G. (2018) A functional trait database for Mediterranean Basin plants. – Scientific Data 5: 180135.

Leaf presence and metamorphosis

Data on the presence of leaves on the plant, their metamorphoses and reductions are based on the Flora of the Czech Republic (vols. 1–8 Hejný et al. 1988–1992, Slavík et al. 1997–2004, Štěpánková et al. 2010) and the Key to the Flora of the Czech Republic (Kubát et al. 2002).

Categories

  • leaves present, not modified
  • leaves modified to spines
  • leaves modified to tendrils
  • leaves modified to phyllodes
  • leaves modified to pitchers
  • leaves reduced to collars
  • leaves reduced to sheaths
  • leaves reduced to scales
  • leaves absent

Data source and citation

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Kubát K., Hrouda L., Chrtek J. Jr., Kaplan Z., Kirschner J. & Štěpánek J. (eds) (2002) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Leaf arrangement (phyllotaxis)

Four basic types of leaf arrangement are distinguished: alternate, opposite, verticillate (whorled) and rosulate (in the basal rosette). The character is assessed in well-developed plants, i.e. not in individuals re-sprouting after damage by mowing or grazing or those with teratological modifications. More than one character state may occur (e.g. Hylotelephium jullianum and Salix purpurea) in some taxa: all character states are recorded in such cases.

In some plants, the arrangement of frondose bracts in the inflorescence is assessed separately (e.g. true leaves in Veronica persica and V. polita are opposite, while bracts are alternate). Leaves with interpetiolar stipules found in the Rubiaceae family are considered as whorled. The leaves in Rhamnus cathartica are considered as opposite, although in most cases they are sub-opposite.

The information was extracted mainly from the descriptions in the Flora of the Czech Republic (vols. 1–8 Hejný et al. 1988–1992, Slavík et al. 1997–2004, Štěpánková et al. 2010). In cases of uncertainties, mainly for alien taxa, additional sources were consulted, including the Flora of North America (Flora of North America Editorial Committee 1993), the Flora of China (Wu et al. 1994) and the Flora of Pakistan (www.tropicos.org/Project/Pakistan).

Categories

Data source and citation

Grulich V., Holubová D., Štěpánková P. & Řezníčková M. (2017) Leaf arrangement. – www.pladias.cz.

Further references

Flora of North America Editorial Committee (eds) (1993) Flora of North America North of Mexico. – Oxford University Press, New York.
Flora of Pakistan. – http://www.tropicos.org/Project/Pakistan
Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.
Wu Z., Raven P. H. & Huang D. (eds) (1994) Flora of China. – Science Press, Beijing & Missouri Botanical Garden, St. Louis.

Leaf shape

The primary distinction is made between simple and compound leaves. The simple leaves are categorized based on the leaf blade division associated with venation into palmately divided (e.g. Alchemilla), pinnately divided (e.g. Achillea millefolium), forked (e.g. Batrachium, Ceratophyllum and Utricularia) and pedate (e.g. Helleborus). The categorization is based on well-developed leaves. In many taxa, transitions occur between simple leaves with a dentate or serrate margin, and simple divided (pinnately or palmately lobed) leaves. Only the leaves with the lamina divided to at least one-quarter of their width are considered as divided. Many taxa with varying leaf division are assigned to more than one character state.

The compound leaves are divided into palmate and pinnate. The taxa that have both ternate and pinnate leaves, the latter with two pairs of leaflets (e.g. Aegopodium podagraria and some other species of the Apiaceae family), are assigned to both character states. The degree of division in pinnately compound leaves indicated here relates to well-developed leaves, especially to the basal part of the lamina. Taxa with multiple pinnately compound leaves are assigned to two or more character states based on the level of division, but very small leaves, which may correspond to simple leaves, are not considered.

In many cases, there are transitions between simple and compound leaves, especially between pinnatisect and pinnate leaves. Leaves with linear or filiform segments, including the bi-, tri- or even more-pinnatisect or palmatisect leaves (e.g. stem leaves in Batrachium fluitans, Cardamine pratensis and the genus Seseli) are classified as simple (dissected) leaves. In contrast, leaves with broader segments attached to the rachis by a distinct constriction or a petiolule (e.g. stem leaves in Cardamine dentata or ground leaves in Pimpinella saxifraga) are classified as compound.

In heterophyllous taxa, all types of leaves are assessed, and the taxon is assigned to two or more character states. However, less divided leaves found in juvenile plants of some taxa are not considered heterophyllous. The parasitic plants with rudimentary (vestigial) leaves (e.g. Cuscuta) or the plants with phylloclades replacing the vestigial leaves (e.g. Asparagus) are assigned the character state “reduced”.

The information was extracted mainly from the descriptions in the Flora of the Czech Republic (vols. 1–8 Hejný et al. 1988–1992, Slavík et al. 1997–2004, Štěpánková et al. 2010). In uncertain cases, mainly for alien taxa, additional sources were consulted, including the Flora of North America (Flora of North America Editorial Committee 1993), the Flora of China (Wu et al. 1994) and the Flora of Pakistan (www.tropicos.org/Project/Pakistan).

Categories

  • simple – entire
  • simple – palmately divided
  • simple – pinnately divided
  • simple – forked
  • simple – pedate
  • compound – ternate
  • compound – palmate (5-foliate)
  • compound – palmate (7-foliate)
  • compound – palmate (8- and more-foliate)
  • compound – imparipinnate
  • compound – paripinnate
  • compound – interruptedly pinnate
  • compound – bipinnate
  • compound – tripinnate
  • compound – quadripinate
  • reduced

Data source and citation

Grulich V., Holubová D., Štěpánková P. & Řezníčková M. (2017) Leaf shape. – www.pladias.cz.

Further references

Flora of North America Editorial Committee (eds) (1993) Flora of North America North of Mexico. – Oxford University Press, New York.
Flora of Pakistan. – http://www.tropicos.org/Project/Pakistan
Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.
Wu Z., Raven P. H. & Huang D. (eds) (1994) Flora of China. – Science Press, Beijing & Missouri Botanical Garden, St. Louis.

Stipules

Stipules, i.e. paired leaflike appendages at the base of the petiole or sessile leaf blade, can be present or absent. Caducous stipules, i.e. those disappearing soon after the leaf blade has developed (e.g. Prunus), are considered as present. The interpetiolar stipules, morphologically indistinguishable from true leaves and together forming whorls (e.g. Rubiaceae), are considered as true stipules. In contrast, stipules modified into glands (e.g. Lotus) or hairs (e.g. Portulacaceae) are not considered as stipules here.

Information about the presence of stipules was extracted from the descriptions in the Flora of the Czech Republic (vols. 1–8 Hejný et al. 1988–1992, Slavík et al. 1997–2004, Štěpánková et al. 2010). In cases of uncertainties, mainly concerning alien taxa, descriptions in the Flora of North America (Flora of North America Editorial Committee 1993), the Flora of China (Wu et al. 1994) and the Flora of Pakistan (www.tropicos.org/Project/Pakistan) were consulted.

Categories

Data source and citation

Grulich V., Holubová D., Štěpánková P. & Řezníčková M. (2017) Stipules. – www.pladias.cz.

Further references

Flora of North America Editorial Committee (eds) (1993) Flora of North America North of Mexico. – Oxford University Press, New York.
Flora of Pakistan. – http://www.tropicos.org/Project/Pakistan
Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.
Wu Z., Raven P. H. & Huang D. (eds) (1994) Flora of China. – Science Press, Beijing & Missouri Botanical Garden, St. Louis.

Petiole

Leaf petiole can be present or absent. In some plants, it can be present in some leaves but absent in others. The data were extracted from the Flora of the Czech Republic (vols. 1–8 Hejný et al. 1988–1992, Slavík et al. 1997–2004, Štěpánková et al. 2010), the Key to the Flora of the Czech Republic (Kubát et al. 2002), the New Hungarian Herbal (Király et al. 2011) and the Excursion Flora of Germany (Jäger & Werner 2000).

Categories

  • present
  • mainly present
  • both present and absent
  • mainly absent
  • absent

Data source and citation

Prokešová H. & Grulich V. (2017) Petiole. – www.pladias.cz.

Further references

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Jäger E. J. & Werner K. (eds) (2000) Rothmaler, Exkursionsflora von Deutschland. Band 3. Gefäßpflanzen: Atlasband. Ed. 10. – Spectrum Akademischer Verlag, Heidelberg & Berlin.
Király G., Virók V. & Molnár V. (eds) (2011) Új Magyar füvészkönyv. Magyarország hajtásos növényei: ábrák [New Hungarian Herbal. The vascular plants of Hungary: Figures]. – Aggteleki Nemzeti Park Igazgatóság, Jósvafő.
Kubát K., Hrouda L., Chrtek J. Jr., Kaplan Z., Kirschner J. & Štěpánek J. (eds) (2002) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Leaf life span

Leaf life span is a functional trait important for plant competitiveness. It depends on the climate in the distribution range of the taxon and microclimate, nutrient and light availability in typical habitats of the taxon. The data were taken from the BiolFlor database (Klotz & Kühn 2002).

  • overwintering green – leaves developing in autumn, overwintering green and decaying in spring and summer
  • spring green – leaves green from early spring to early summer, then usually decaying
  • summer green – leaves green in the warm season
  • evergreen – leaves green throughout the year, often living for more than one year (persistent-green)

Categories

Data source and citation

Klotz S. & Kühn I. (2002) Blattmerkmale. – In: Klotz S., Kühn I. & Durka W. (eds), BIOLFLOR: eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, Schriftenreihe für Vegetationskunde 38: 119–126.

Leaf deciduousness in woody plants

Leaves of different woody plant species have distinct phenological patterns. Most species of Central European woody plants have winter-deciduous leaves, while a small proportion has evergreen (persistent-green) leaves. Semi-deciduous leaves are rare, occurring mainly in cultivated species. The category of winter semi-deciduous leaves includes only the leaves that are at least partly green in winter, not marcescent leaves, which die out in autumn and remain attached, in a dry state, to the maternal plant over the winter (e.g. young individuals of Quercus).

Data on leaf deciduousness were extracted from the Flora of the Czech Republic (vols. 1–8 Hejný et al. 1988–1992, Slavík et al. 1997–2004, Štěpánková et al. 2010), Key to the Flora of the Czech Republic (Kaplan et al. 2019), floras of some other countries, and complemented by original observations.

Categories

  • evergreen
  • winter deciduous
  • winter semi-deciduous
  • drought semi-deciduous

Data source and citation

Štěpánková P. & Grulich V. (2020) Leaf deciduousness in woody plants. – www.pladias.cz

Further references

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Leaf anatomy

Leaf anatomy is an important ecological adaptation which helps plants to optimize photosynthesis under various environmental conditions. It reflects especially the availability of water (Klotz & Kühn 2002). Succulent and scleromorphic leaves are adapted to dry conditions. Both of them have thickened epidermis and cuticle, but the former develop a water-storage tissue while the latter have mechanisms to promote water transport in periods of water availability. Mesomorphic leaves are adapted to less dry conditions hygromorphic leaves to shady conditions that rarely suffer from drought helomorphic leaves to oxygen deficiency in swampy soils and hydromorphic leaves to gas exchange in the water. The most common type in the Czech flora is mesomorphic leaves. The data were taken from the BiolFlor database (Klotz & Kühn 2002), which contains an extended and corrected version of the dataset published by Ellenberg (1979).

Categories

  • succulent
  • scleromorphic
  • mesomorphic
  • hygromorphic
  • helomorphic
  • hydromorphic

Data source and citation

Klotz S. & Kühn I. (2002) Blattmerkmale. – In: Klotz S., Kühn I. & Durka W. (eds), BIOLFLOR: eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, Schriftenreihe für Vegetationskunde 38: 119–126.

Further references

Ellenberg H. (1979) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Ed. 2. – Scripta Geobotanica 9: 1–122.

Functional leaf type in woody plants

Functional leaf types in woody plants, often used for physiognomic classification of forest and scrub vegetation, are distinguished based on their morphology, anatomy and life span. Most angiosperm woody plants of the central-European flora have broad deciduous or semi-deciduous leaves, which have a large specific leaf area. The other leaf types are, with rare exceptions (Larix), perennial and usually called evergreen. Needle-like and scale-like leaves occur in conifers and some species of Ericaceae. Sclerophyllous leaves are flat but have a strongly developed sclerenchyma, which causes their toughness. They are usually small coriaceous leaves with small specific leaf area, adapted to dry climate. Laurophyllous leaves are larger and thinner than sclerophyllous leaves and have a smaller amount of sclerenchyma. In most cases, they are dark green, smooth and shiny. These leaves are adapted to year-round wet climates with mild winters. A few species that are difficult to assign to these categories are classified as “special type”.

The data on functional leaf types were taken from the Flora of the Czech Republic (vols. 1–8 Hejný et al. 1988–1992, Slavík et al. 1997–2004, Štěpánková et al. 2010), Key to the Flora of the Czech Republic (Kaplan et al. 2019), floras of some other countries, and complemented by original observations.

Categories

  • needle-like
  • scale-like
  • broad deciduous or semi-deciduous
  • sclerophyllous
  • laurophyllous
  • special type

Data source and citation

Štěpánková P. & Grulich V. (2020) Functional leaf type in woody plants. – www.pladias.cz.

Further references

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Flower

Flowering period

The months of the beginning and end of flowering in the Czech Republic are given. The data were taken from the Key to the Flora of the Czech Republic (Kaplan et al. 2019).

Data source and citation

Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.

Flowering phase

The flowering period for plants is usually indicated in months. However, as the start and end of the flowering period depend on the weather, the exact time may change from year to year. Therefore, Dierschke (1995) classified plant taxa into symphenological groups, i.e. groups of taxa that usually bloom together. The data were taken from the BiolFlor database (Trefflich et al. 2002).

Categories

  • 1 Corylus avellana-Leucojum vernum (pre-spring)
  • 2 Acer platanoides-Anemone nemorosa (start of early spring)
  • 3 Prunus avium-Ranunculus auricomus (end of early spring)
  • 4 Fagus sylvatica-Galeobdolon (start of mid-spring)
  • 5 Sorbus aucuparia-Galium odoratum (end of mid-spring)
  • 6 Cornus sanguinea-Melica uniflora (start of early summer)
  • 7 Ligustrum vulgare-Stachys sylvatica (end of early summer)
  • 8 Clematis vitalba-Galium sylvaticum (mid-summer)
  • 9 Hedera helix-Solidago (early autumn)
  • 10 Autumn-phase

Data source and citation

Trefflich A., Klotz S. & Kühn I. (2002) Blühphänologie. – In: Klotz S., Kühn I. & DurkaW. (eds), BIOLFLOR, eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, Schriftenreihe für Vegetationskunde 38: 127–131.

Further references

Dierschke H. (1995) Phänologische and symphänologische Artengruppen von Blütenpflanzen in Mitteleuropa. – Tuexenia 15: 523–560.

Flower colour

Flower colour is reported for nearly all angiosperms except duckweeds (Araceae p. p.) and some hybrids for which data on flower colour were not available.


Is this a Loranthus Europaeus? - Biology

3) Triterpenoids from L. grewinkii and L. falcatus [40] [41] .

4) Kaempferol 3-O-α-D-rhamnoside, kaempferol 3,7-di-O-β-D-glucoside, quercetin 3-O-α-D-rhamnoside and quercetin 3-O-β-D-glucoside from L. kaoi and L. europaeus [42] [43] .

5) A cytotoxin from L. parasiticus [44] , and phenolics from L. longiflorus [45] .

6) Flavonol rhmnoside from L. tanakae and cytoxic effects on the human tumour cell line [46] .

Many of these compound have a biological activities such as antihypertensive and anti-diabetic effect of L. bengwensis [47] [48] , and antiviral activity of L. parasiticus [49] .

Loranthus europaeus is one species of Lorantheceae, and many studies showed that LE contain many biological compounds including: Flavonoids (kaempherol, quercetin [43] and rutin [50] ), alkaloids [51] , glycosides, carbohydrate, aldehyde, ketones, protein, polysaccharide [52] , terpenes (monoterpens and triterpenes [52] [53] ), phenolic acid (caffeic and gallic acid) [54] , lipid include Palmitic acid, paraffin C30H62 and wax alcohol and sugar (sucrose) [55] .

Many of these active ingredients had been extracted from different plants and investigated in many in vitro studies for antileishmanial activity, such as: Alkaloids that are able to intercalate DNA or interfere with the metabolism of aromatic amino acids in the parasite [56] .

As the iron (Fe 2+ ) are essential for organism growth and replication inside macrophage, a chelator effect of the quercetin had been evaluated in interference of parasite’s iron metabolism and showed leishmanicidal action [57] - [59] . Quercetin also can induce the production of reactive oxygen species (ROS), that leading to mitochondrial dysfunction and ultimately causing parasite death [60] [61] .

The leishmanicidal activity of caffeic acid may attribute to the interaction of with iron and it could cause change in the structure of cytoplasmic proteins that inhibit cell division [25] .

In addition to the above antileishmanial effect, the LE contain polysaccharide and Aldehyde that showed action in an accelerate wound healing [52] , this might contribute to rapid ulcer healing of CL and decrease scar formation which is the main target in CL treatment, and also the antimicrobial effect that prevent secondary bacterial infection [30] .

2. Pharmacological Effects of Loranthus europaeus According to in Vitro Studies

In one study revealed that the presence of monoterpene in oily extract of LE seeds account for antioxidative action [53] . While other study showed that the pure antioxidant including gallic acid, caffeic acid and quercetin account for this action [54] .

2.2. Wound and Burn Healing Effect

The efficacy of topical oily extract of LE seeds was investigated in wound healing on excision wound in 18 rabbits [52] . After a preparation of ointment from plant seeds and many preliminary biochemical analysis were carried out to find the chemical contents of oily extract which found the presence of glycosides, carbohydrate, aldehyde, ketones, tritrpenoides, protein and polysaccharide, then the wound evaluated daily macroscopically to measure contraction rate, hyperemia, exudate and scab formation, while microscopically for neutrophil, macrophage infiltration, re-epithelzation, fibroblast proliferation with collagen production and new blood capillary formation [52] .

The study showed that macrophage activated by polysaccharide which stimulates the fibroblast proliferation with subsequent of myoproliferation at periphery of the wound which has important role in wound contraction [62] [63] . The daily contraction rate of wound treated by topical ointment of LE was 1.8 mm/ day. The presence of polysaccharides also has a role in activate macrophage to secrete cytokines such platelet derived activating factor (PDAF), transforming growth beta factor (TGβF), interleukin (IL), fibroblast growth factor (FGF), insulin growth factor (IGF-1), epidermal growth factor (EGF), these cytokines are essential for fibroblast proliferation, angiogenesis, and chemotactic of neutrophil [64] and may explained the high infiltration of neutrophil in wound treated by LE oil extract particularly in early inflammatory phase. Since oxygen is required for the synthesis of collagen by fibroblast, the extract might improve angiogenesis or vascular supply and make more oxygen available to improve collagen formation for wound healing [65] . During wound healing process, epithelial cells proliferate and migrate from the edge of the wound and eventually cover the wound with new skin [66] , by lysing collagen enzyme, the epithelial cells move across the wound and attach to viable tissue, the proliferation and migration of the epithelial cells is dependent on adequate supply of oxygen (O2) [67] , therefore, the increased presence of O2 caused by LE oil extract. There was also a relationship between healing process and scab formation [68] , the appearance of scab layer in treated wound by LE oil extract can behave like semi-occlusive dressing that protect the wound and promote of migration of epithelium and provide more cosmetic results. Aldehyde in addition to polysaccharide also reported to induce healing properties by increase cellular proliferation and collagen synthesis at wound edge [69] .

In other study, when a hot watery and alcoholic extract of seeds of LE with different concentration used topically in treatment of burns in mice showed complete cure of burns [70] .

The effects of topical LE seeds oil extract had been investigated on pyogenic inflammation in excision wound created in the 24 rabbits were the wound of the animals contaminated by staphylococcus aurous bacteria, then the wound evaluated macroscopically which showed increase in hyperemia and exudation in the first days and then gradually disappearance, while microscopically show significant neutrophil and macrophage infiltration. During bacterial infection there was a massive production of pro-inflammatory cytokines including IL1 and IL 6 [71] , which mediate for chemotactic of neutrophils [64] , that responsible for eradicating of invasive bacteria and necrotic tissue from wound site [72] , many authors emphasized that polysaccharide promote macrophage activity through binding to glycoprotein surface receptor [73] and these activated macrophage play a role in phagocytosis of killed bacteria and damaged tissue and stimulate the chemotaxis, proliferation of fibroblast, collagen synthesis and induce angiogenesis. On basis of this study one can concluded that the oil extract of LE seeds may acts as immuomoduialtors during bacterial infection and contain substance that act as chemotactic agent for neutrophil and promote macrophage activity [29] .

2.4. Anti-Inflammatory Effect

The inflammatory effect of ethyl acetate and methanol extract of LE were evaluated in the acute inflammation in rats when the extract given intraperitoneal, preliminary phytochemical investigated revealed the presence of Flavonoids (quercetin, kaempherol and rutin) and trace of alkaloids plays a crucial role in the ability of suppression of acute inflammation [50] .

Mistletoe extract have been widely used in complementary cancer therapy in Europe [74] , in a retrospective study with 700 lymphoma patients whose received mistletoe extract suggest this therapy to be beneficial [75] . In one study the effect of high concentration LE ethyl acetate and chloroform extract show to have cytotoxic effects on the growth of rhabdomyosarcoma (RD) and rat embryo fibroblast (REF) cell lines [51] . The phytochemical evaluation of extract show that the flavonoid are the major constituents and produced many biological activities when administrated both in pure form or within extract these include immune regulation, antioxidant, antibacterial and play important role in modulating cell proliferation in addition to alkaloids, the antitumor effect showed formation of variable adducts with DNA, proteins and other macromolecules and consequently affecting cells divisions by affecting the time of S and/or G2 phases, while in the same study the low consecration of extract produced proliferative activity in RD and REF cells, so careful should take when using such extract in traditional medicine especially for treatment of tumors [76] .

2.6. Immunomodulator Effect

When the flavonoids and terpenoides isolated from LE and tested on mouse spleen lymphocyte proliferation, both compounds show activation of unstimulated lymphocytes in dose dependent manner, so considered as potential immunomodulators [77] .

2.7. Neuroprotective Effect

In vitro study LE fruits show antioxidant and neuroprotective effect in whom Ibn Sian described it in Cannon of Medicine in management of stroke [78] .

2.8. Side Effects of Loranthus europaeus

Topical poultice of dry fruit of LE after mastication in mouth used in treatment of boils and abscess which cause maturation and drain of pus from it and this way used for long time ago in folk medicine in Iraq and no any topical and systemic sides effects had been mentioned in medical literatures from use it topically.

In recent years many in vitro studies showed sides effects from used it systemically including:

LE chloroform extract was prepared and used orally for investigation of genotoxic effects in different doses, on bone marrow and peripheral blood cells of mice. Result showed large dose of extract decrease mitotic index and increase chromosomal aberration and significantly decrease the total and different white blood cell counts when compared with lower dose [79] .

In other study, gene toxicity of chloroform and ethyl acetate extract of LE fruits evaluated with different doses on bone marrow and spleen cells of mice in comparable with methotrexate, the extracts contain different amount of alkaloids and flavonoid, showed increasing the amount of alkaloids leads to increase clastogenicity effect while increasing in the amount of flavonoids offer anti-clastogenic effect, and the genotoxic effect after seven successive days was less toxic than methotrexate [80] .

Most recently [81] we used LE as topical 40% ointment in the treatment of acute CL as alternative medicine through case therapeutic, comparative study and compared with topical 25% podophillyn solution [18] , when thirty-five patients with 86 lesions enrolled in this study. The total number of lesions that treated were 76 lesions, 46 (60.53%) were ulcerated and 30 (39.47%) lesions were dry, while 10 dry lesions in the covered area were left untreated as a control. Lesions were divided into two groups with matching of type and size of lesions. In group one including 33 (43.42%) lesions were treated by topical 25% podophyllin solution once weekly for maximum 6 weeks, while group two consisting 43 (56.58%) lesions treated with topical 40% Loranthus europaeus ointment applied daily for maximum 6 weeks. The response to the treatment was assessed by using the modified Sharquie Leishmania score to assess the objective response to the topical or systemic therapy. Follow up was done every 2 weeks for 8 weeks during therapy then monthly for next 3 months. After 6 weeks the cure rate was 84.84% for lesions treated with podophyllin and 79.07% for lesions treated with Loranthus europaeus.

When the 2 groups compared with each other there was no statistical significant difference where the p value after 6 weeks was 0.648.

As Loranthus europeaus contains many active bioactive agents, further studies are highly recommended for assessing these active medicinal agents for treatment other skin disease as this plant is safe to be used on the skin.

This study was an independent study and not funded by any drug companies.


Not Just for Kissing: Mistletoe and Birds, Bees, and Other Beasts

Mistletoe can take many forms other than the American mistletoe with berries seen around the holidays.

Perhaps some of you have already experienced a sweet smooch or two under the holiday mistletoe, enjoying this fairly old kissing ritual for people. While figuring prominently in ancient lore, mistletoe is important in other vital ways: it provides essential food, cover and nesting sites for an amazing number of critters. In fact, some animals couldn’t even survive without mistletoe.

Mistletoe can take many forms other than the American mistletoe with berries seen around the holidays.

Perhaps some of you have already experienced a sweet holiday smooch or two under the holiday mistletoe, enjoying this fairly old kissing ritual for people. While figuring prominently in ancient lore about myth and magic, mistletoe is important in other vital ways: it provides essential food, cover, and nesting sites for an amazing number of critters in the United States and elsewhere. In fact, some animals couldn’t even survive without mistletoe, including some birds, butterflies, and insects.

But first, a little bit about the plant. The white-berried holiday mistletoe we hang so hopefully in places where our sweethearts will find us lingering is just one of more than 1,300 species of mistletoe worldwide. Globally, more than 20 mistletoe species are endangered. Two growth forms of mistletoes are native to the United States: the leafy American mistletoe (the one commonly associated with our kissing customs) and the mostly leafless dwarf mistletoe. American mistletoe is found from New Jersey to Florida and west through Texas. The dwarf mistletoe, much smaller than its kissing cousin, is found from central Canada and southeastern Alaska to Honduras and Hispaniola, but most species are found in western United States and Mexico.

Mistletoe is no newcomer to this country: excavations of packrat middens (the messy pile of sticks and debris they call home - including food waste, animal bones, and even human trash or ‘lost’ objects, all cemented together over time by the feces and urine of the packrat), reveal that dwarf mistletoes have been part of our forests for more than 20,000 years. Some fossil pollen grains even indicate that the plant has been here for millions of years. Mistletoes, said USGS researcher Todd Esque, should be viewed as a natural component of healthy forest ecosystems, of which they have been a part for thousands, if not millions of years.

Thief of the Tree

The thing that all mistletoes have in common is this: all grow as parasites on the branches of trees and shrubs. In fact, the American mistletoe’s scientific name, Phoradendron, means “thief of the tree” in Greek. The plant is aptly named: it begins its life as a handily sticky seed that often hitchhikes to a new host tree on a bird beak or feather or on mammal fur. In addition to hitchhiking, the dwarf mistletoe also has another dandy way of traveling to a new host tree: the seeds of this mistletoe will, like tiny holiday poppers, explode from ripe berries, shooting a distance as far as 50 feet. One researcher said that if you put ripe berries in a paper bag and shake it, it sounds just like popping popcorn.

For the most part, the mistletoe is pretty darn cavalier about what host tree it finds — dwarf mistletoes of high elevations like most kinds of conifers, and those of the hot deserts generally prefer legume trees American mistletoes are found on an incredible variety of trees. Once on a host tree, the mistletoe sends out roots that penetrate the tree and eventually starts pirating some of the host tree’s nutrients and minerals. In actuality, mistletoes are not true parasites instead they are what scientists call “hemi-parasites” because most of them have the green leaves necessary for photosynthesis. Still, it seems like a pretty lazy life for most mistletoes: a little photosynthesis here and there and a lot of food and water stolen from their unsuspecting benefactor trees. Eventually, mistletoes grow into thick masses of branching, misshapen stems, giving rise to a popular name of witches’ brooms, or the apt Navajo name of “basket on high.”

Birds and the Mistletoe Trees

The plant’s common name — mistletoe — is derived from early observations that mistletoe would often appear in places where birds had left their droppings. “Mistel” in the Anglo-Saxon word for “dung,” and “tan” is the word for “Twig.” Thus, mistletoe means “dung-on-a-twig.” Yet even though bird droppings cannot spontaneously generate mistletoe plants, birds are an important part of mistletoe life history — and vice versa. A surprising variety of birds use or rely on mistletoe. In studies by former USGS scientist Rob Bennetts and other studies, a high abundance of dwarf mistletoe in a forest means that more kinds and numbers of birds inhabit that forest. Also, since the lifespan of mistletoe-laden trees is considerably shorter than trees where the plant is absent, a higher number of tree snags occupy mistletoe-laden woods. Not surprisingly, this means that more — one study documented at least three times as many — cavity-nesting birds live in forests with abundant mistletoes. The phainopeplas, a silky flycatcher, are beautiful birds that live in the desert areas of the Southwest and West and are especially dependent on mistletoe.

Diane Larson, a USGS researcher, studied mistletoes and birds in Arizona. “I found that phainopeplas, which rely on mistletoe almost exclusively for food during the winter, were also the species most likely to disperse the mistletoe seeds to sites suitable for germination and establishment. Both the bird and the plant benefited from this relationship,” says Larson. USGS researcher Esque said his goal is to understand the distribution of the host trees in relation to mistletoe patterns and bird behavior. “We know the relationship is mutually beneficial for both species,” said Esque. Some research indicates that if mistletoe-berry production is poor, these birds may not breed the following spring.

But the phainopepla is just one of many birds that eat mistletoe berries others include grouse, mourning doves, bluebirds, evening grosbeaks, robins, and pigeons. Naturalist and writer John Muir noted American robins eating mistletoe in the mountains of California in the late 1890’s. Wrote Muir: “I found most of the robins cowering on the lee side of the larger branches of the trees, where the snow could not fall on them, while two or three of the more venturesome were making desperate efforts to get at the mistletoe berries by clinging to the underside of the snow-covered masses, back downward, something like woodpeckers.”

Birds also find mistletoe a great place for nesting, especially the dense witches’ brooms. In fact, northern and Mexican spotted owls and other raptors show a marked preference for witches’ brooms as nesting sites. In one study, 43 percent of spotted owl nests were associated with witches’ brooms. Similarly, a USGS researcher found that 64 percent of all Cooper’s hawk nests in northeastern Oregon were in mistletoe. Other raptors that use witches’ brooms as nesting sites include great gray owls, long-eared owls, goshawks, and sharp-shinned hawks. Likewise, some migratory birds also nest in witches’ broom — gray jay, northern beardless-tyrannulet, red crossbills, house wrens, mourning doves, pygmy nuthatches, chickadees, Western tanagers, chipping sparrows, hermit thrushes, Cassin’s finches, and pine siskins. “A well-disguised nest provides protection against predators such as the great horned owls,” Bennetts said.

Bees, Butterflies, and Others

According to butterfly expert and Colorado State University professor Paul Opler, three kinds of butterflies in the United States are entirely dependent on mistletoes for their survival: the great purple hairstreak, the thicket hairstreak, and the Johnson’s hairstreak. The great purple hairstreak, says Opler, is the only butterfly in the United States that feeds on American mistletoe. This beautiful butterfly lays its eggs on the mistletoe, where the resulting caterpillars thrive on a mistletoe diet. The caterpillars of the other two butterflies feed on dwarf mistletoes. The Johnson’s hairstreak, restricted to the Pacific states, is usually found in association with old-growth conifer forests, the same places spotted owls prefer. The caterpillars of these butterflies closely mimic the appearance of the mistletoe with their mottled green and olive shades. Like people, the butterflies of these species use mistletoe for courtship rituals. After courting and mating in the mistletoe high in the canopy, the adults leave their eggs behind in the mistletoe. The adults of all three species drink nectar from the mistletoe flowers.

Mistletoe is also important nectar and pollen plant for honeybees and other native bees, says Erik Erikson, a bee researcher at the USDA Bee Research Lab. Mistletoe flowers, says Erikson, often provides the first pollen available in the spring for the hungry bees. “We look upon it as an important starter food source for the bees,” said Erikson. Wind and insects are important mistletoe pollinators. Although hundreds of kinds of insects carry mistletoe pollen, only a few dozen are important pollinators these include a variety of flies, ants, and beetles. Yet other insects eat the shoots, fruits, and seeds of the mistletoe, including some that feed exclusively on the plant. Exclusive mistletoe-eaters include a twig beetle, several thrip species, and a plant bug whose coloration mimics dwarf mistletoe fruits. In addition, at least four mite species seem to be exclusively associated with dwarf mistletoe.

And Then There’s the Mammals

Don’t try it at home, kids and grown-ups — mistletoe is toxic to people, but the berries and leaves of mistletoe provide high-protein fodder for many mammals, especially in autumn and winter when other foods are scarce. Researchers have documented that animals such as elk, cattle and deer eat mistletoe during winter when fresh foliage is rare. In Texas, some ranchers even consider mistletoe on mesquite as an insurance forage crop, which the ranchers remove from the trees for cattle food when other forage is scarce. Other mammals that eat mistletoe include squirrels, chipmunks, and even porcupines, some of which are deliriously fond of the plant. A variety of squirrels, including red squirrels, Abert squirrels and flying squirrels often use witches brooms for cover and nesting sites.

A Blessing or a Bane?

Not everyone likes mistletoe. Many commercial foresters consider the dwarf mistletoe as a disease that reduces the growth rates of commercially important conifer species, such as the ponderosa pine. Ecologists, though, point out that mistletoes are not a disease instead, they are a native group of plants that have been around thousands, or even millions, of years.

Blessing or bane, it is certain that mistletoe is not spreading like wildfire — in fact, mistletoe spreads only about 2 feet per year. One study indicated that a 1.5-acre patch of mistletoe took about 60 to 70 years to form. Likewise, the death of an individual tree from dwarf mistletoe may take several decades, and widespread infestation of a forest stand may take centuries. Bennetts believes that the conflict with forest management and the perspective of mistletoes being a forest disease really only comes into play when the management objectives are to maximize timber harvest. Otherwise, he says, mistletoes have many positive attributes, including tremendous benefits for native wildlife. Thus, he says, when not in conflict with commercial timber management objectives, mistletoes should be viewed as a natural component of healthy forest ecosystems.

Says Bennetts: “I had the privilege of working with a biologist who had spent more than 50 years working on mistletoes. He began his work with the intent of finding a way to control this ‘forest pest,’ but in his later years, he even introduced dwarf mistletoe to some of the trees in his yard because he had grown to love this plant for what it is . . . a fascinating and natural part of forest ecosystem.”

Mistletoe FAQ’s

Q: What is the type of mistletoe most people think of during the holidays?

A: Phoradendron serotinum, also known as American mistletoe, is commercially harvested and sold around the world. This species typically grows on oak trees across North America, and is native to Mexico.

Q: How does mistletoe grow and spread?

A: Mistletoe spreads by seeds — the seeds in some mistletoe explode from a fruit and disperse themselves. Many North American types of mistletoe are distributed by birds either in their feces or due to the stickiness of the berries and seeds. They also may be cleaned from bird beaks onto the branches of trees where they grow. Once mistletoe germinate and become established, they have material similar to a root for a ground-dwelling plant. This material moves under the bark and that is how the mistletoe gains energy as well as nutrients from its host tree.

Q: Is mistletoe fruit more nutritious than comparable berries on other plants?

A: Yes, all 10 essential amino acids have been found in mistletoe fruit, as well as high carbohydrate fractions. Some mistletoe species (such as the Loranthus europaeus) are very high in fat content, while others are full of protein. In addition, in many arid areas (such as the Southwest U.S.), mistletoe fruit is a reliable source of water.

Q: What are the medical applications for mistletoe?

A: Mistletoe has been widely used in Europe and is regarded as the most widely used natural therapy for cancer. In addition, it has many uses in traditional Chinese medicine as well as in traditional indigenous groups in Australia and Latin America. Some of these uses involve compounds taken from their host tree (and concentrated), but most are related to lectins and other secondary compounds manufactured by the mistletoes themselves. Navajo medicinal uses include using Juniper mistletoe to create a soothing lotion for bug bites, to cure warts, and to ease stomach pain.

Q: Do trees infected with mistletoe die earlier than those uninfected?

A: This depends on a number of factors, including type of mistletoe and amount growing on trees. A parasite’s function is to not kill their host, however some parasites can have detrimental effects, and in high densities mistletoe can affect growth rates of their host trees. Direct effects on tree mortality are cited in very few documented studies and occur in very high mistletoe densities when the normal factors that keep mistletoe in line are not functioning properly. Dwarf mistletoe is an exception — their way of infecting trees is different, so they are more likely to have detrimental effects on their hosts. Even then, mortality is characteristically due to indirect effects such as bark beetles or fungal attacks. Contrary to negative effects of mistletoe on trees, many foresters consider mistletoe to be a powerful positive force in forests, weeding out those trees poorly suited for the area and ensuring long-term forest and tree health.

Q: What is the best way to permanently remove mistletoe from a tree?

A: Pruning out all branches with the mistletoe material (see question on how mistletoe grows and spreads) as soon as the plant appears should control the mistletoe and prevent its spread. First cut close the mistletoe, then look at the branch structure and prune approximately one foot below where the mistletoe physically appears in order to rid the host tree of the mistletoe plant.

Q: How do the dynamics of U.S. dwarf mistletoe (Arceuthobium) dispersal differ from the Phoradendron plants?

A: As well as using hydrostatic expulsion to shoot seeds at speeds up to 60 miles per hour and distances of 50 feet, many Arceuthobium (dwarf mistletoe) species also form ‘systematic’ infections in their host. Initial establishment involves the growth of an endophytic system — a network of vessels growing throughout the host tissue. Then, when the plant becomes reproductively mature, shoots may pop out anywhere on the tree, not just near the point of initial infection.

Q: Is there a phylogenetic “mistletoe” group, or are mistletoes a collection of unrelated species?

A: Mistletoes have evolved at least five times, all from root parasitic ancestors within the same Santalales plant order. They are all related and come from a single ancient ancestor, but the aerial parasitic habit has evolved multiple times. Mistletoes are grouped based on this convergent way of life (similar to mangroves or succulents), and are not a monophyletic group.


Loranthus europaeus &ndash ochmet evropský

Výšky rostlin se vztahují k území České republiky. Uvádějí se v metrech a vztahují se k plně vyvinutým rostlinám v generativním stavu rostoucím ve volné přírodě. Pro každý taxon jsou uvedeny dvě hodnoty: minimum (běžná dolní hranice) a maximum (běžná horní hranice). Údaje byly převzaty z Klíče ke květeně České republiky (Kaplan et al. 2019).

Zdroj dat a citace

Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.

Růstová forma

Růstová forma popisuje potenciální délku života rostliny a jejích částí (ramet), její reproduktivní strategii a trvalost nadzemních částí (Klimešová et al. 2016, Ottaviani et al. 2017). Růstové formy zde dělíme do devíti kategorií, které rovněž zohledňují bylinný nebo dřevnatý charakter stonku. Jednoleté byliny žijí obvykle jen jednu sezónu, během níž se pohlavně rozmnožují. Některé z nich mohou být klonální, ale klonalita u nich zpravidla nevede k fragmentaci. Vytrvalé byliny se dělí do tří kategorií: (i) monokarpické vytrvalé neklonální byliny, které se pohlavně rozmnožují jen jednou za život a nemají zdřevnatělé nadzemní části ani orgány klonálního růstu, (ii) polykarpické vytrvalé neklonální byliny, které se pohlavně rozmnožují víc než jednou za život, ale nemají orgány klonálního růstu, a (iii) klonální byliny, které mají orgány klonálního růstu, takže mohou během svého života fragmentovat a vytvářet samostatné jednotky (ramety) vegetativním rozmnožováním celá rostlina se pohlavně rozmnožuje vícekrát za život, zatímco jednotlivé ramety se mohou rozmnožovat jedenkrát nebo vícekrát během svého života. Další kategorie zahrnují dřeviny, tj. rostliny s dřevnatějícími stonky, které mohou (ale nemusí) mít orgány klonálního růstu a být schopny fragmentace. Dřeviny se dělí na keříčky (rostliny vysoké zpravidla do 30 cm, zahrnující i druhy, u nichž z dřevnaté báze vyrůstají přímé bylinné prýty, které na podzim odumírají s výjimkou nejspodnější části s obnovovacími pupeny), keře (vyšší dřeviny větvené na bázi), stromy (vyšší dřeviny s vyvinutým kmenem a korunou), dřevnaté liány a parazitické epifyty, k nimž u nás patří jen Loranthus europaeus a Viscum album.

Data byla zčásti převzata z agregované databáze CLO-PLA verze 3.4 (Klimešová et al. 2017), původní kategorie však byly doplněny rozlišením bylinných a dřevnatých druhů a kromě toho byly doplněny údaje pro taxony nezahrnuté v databázi CLO-PLA.

Kategorie

  • jednoletá bylina
  • monokarpická vytrvalá neklonální bylina
  • polykarpická vytrvalá neklonální bylina
  • klonální bylina
  • keříček
  • keř
  • strom
  • dřevnatá liána
  • parazitický epifyt

Zdroj dat a citace

Dřevojan P. (2020) Růstová forma. – www.pladias.cz.

Další literatura

Klimešová J., Nobis M. P. & Herben T. (2016) Links between shoot and plant longevity and plant economics spectrum: Environmental and demographic implications. – Perspectives in Plant Ecology, Evolution and Systematics 22: 55–62.
Klimešová J., Danihelka J., Chrtek J., de Bello F. & Herben T. (2017) CLO-PLA: a database of clonal and budbank traits of the Central European flora. – Ecology 98: 1179.
Ottaviani G., Martínková J., Herben T., Pausas J. G. & Klimešová J. (2017) On plant modularity traits: functions and challenges. – Trends in Plant Science 22: 648–651.

Životní forma

Životní formy jsou klasifikovány podle Raunkiaerova systému (Raunkiaer 1934) na základě polohy obnovovacích pupenů, kterými rostliny přežívají nepříznivé období. Makrofanerofyty jsou dřeviny s obnovovacími pupeny umístěnými nejméně 2 m nad zemí, obvykle stromy nanofanerofyty jsou dřeviny s obnovovacími pupeny ve výšce 0,3–2 m nad zemí, obvykle keře chamaefyty jsou byliny nebo nízké dřeviny s obnovovacími pupeny nad zemí do výše 30 cm hemikryptofyty jsou vytrvalé nebo dvouleté byliny s obnovovacími pupeny na nadzemních stoncích těsně při povrchu půdy geofyty jsou vytrvalé byliny s obnovovacími pupeny pod povrchem půdy, obvykle s cibulemi, hlízami nebo oddenky hydrofyty jsou rostliny s obnovovacími pupeny pod vodní hladinou, obvykle na dně terofyty jsou jednoleté nebo ozimé byliny bez obnovovacích pupenů, které přežívají nepříznivá období pouze v semenech klíčících na podzim, v zimě nebo na jaře.

Data byla převzata z Klíče ke květeně České republiky (Kaplan et al. 2019). Některé taxony mohou mít víc než jednu životní formu, přičemž dominantní životní forma se v tom případě uvádí na prvním místě.

Kategorie

  • makrofanerofyt
  • nanofanerofyt
  • chamaefyt
  • hemikryptofyt
  • geofyt
  • hydrofyt
  • terofyt

Zdroj dat a citace

Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.

Další literatura

Raunkiaer C. (1934) The life forms of plants and statistical plant geography. – Clarendon Press, Oxford.

Přítomnost a přeměna listu

Údaje o přítomnosti listů na rostlině, přeměnách a redukcích listů byly převzaty z Květeny České republiky (díly 1–8 Hejný et al. 1988–1992 Slavík et al. 1995–2004 Štěpánková et al. 2010) a Klíče ke květeně České republiky (Kubát et al. 2002).

Kategorie

  • listy přítomny, nejsou přeměněné
  • listy přeměněné na trny
  • listy přeměněné na úponky
  • listy přeměněné na fylodia
  • listy přeměněné na láčky
  • listy redukované na objímavé lemy
  • listy redukované na pochvy
  • listy redukované na šupiny
  • listy chybějí

Zdroj dat a citace

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Kubát K., Hrouda L., Chrtek J. Jr., Kaplan Z., Kirschner J. & Štěpánek J. (eds) (2002) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Uspořádání listů na stonku (fylotaxe)

Rozlišují se čtyři kategorie postavení listů na stonku: střídavé, vstřícné, přeslenité a v přízemní růžici. Znak je hodnocen u dobře vyvinutých rostlin, nikoli u jedinců kompenzačně větvených po poškození sečí nebo okusem ani jedinců teratologicky změněných. Pokud může tento znak nabývat více než jednoho stavu u jednoho taxonu, jsou zaznamenány všechny (např. Hylotelephium jullianum a Salix purpurea). Hodnoceny jsou i případy, kdy je odlišné postavení listů a lupenitých listenů v květenství (např. Veronica persica a V. polita). Listy s vmezeřenými palisty u čeledi Rubiaceae jsou hodnoceny jako přeslenité. U Rhamnus cathartica jsou listy považovány za vstřícné, i když obvykle jsou na letorostu od sebe poněkud oddáleny.

Uspořádání listů na stonku bylo hodnoceno podle popisů v Květeně České republiky (díly 1–8 Hejný et al. 1988–1992 Slavík et al. 1995–2004 Štěpánková et al. 2010) a v případech nejasností (především u nepůvodních taxonů) konfrontováno s dalšími prameny, zejména s popisy v kompendiích Flora of North America (Flora of North America Editorial Committee 1993), Flora of China (Wu et al. 1994) a Flora of Pakistan (www.tropicos.org/Project/Pakistan).

Kategorie

Zdroj dat a citace

Grulich V., Holubová D., Štěpánková P. & Řezníčková M. (2017) Uspořádání listů na stonku. – www.pladias.cz.

Další literatura

Flora of North America Editorial Committee (eds) (1993) Flora of North America North of Mexico. – Oxford University Press, New York.
Flora of Pakistan. – http://www.tropicos.org/Project/Pakistan
Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.
Wu Z., Raven P. H. & Huang D. (eds) (1994) Flora of China. – Science Press, Beijing & Missouri Botanical Garden, St. Louis.

Tvar listu

Podle tvaru se rozlišují listy jednoduché a složené. Jednoduché listy se dále dělí podle členění čepele a souvisejícího uspořádání žilnatiny na celistvé (např. Fagus sylvatica), dlanitě členěné (např. Alchemilla), peřeně členěné (např. Achillea millefolium), vidličnaté (např. Batrachium, Ceratophyllum a Utricularia) a znožené (Helleborus). Uvedené zařazení do kategorií se vztahuje k dobře vyvinutým listům. I tak je členění listů často proměnlivé a na jedné rostlině existují přechody mezi listy celistvými a členěnými. Za listy členěné se považují listy se zářezy mezi úkrojky dosahujícími nejméně do 1/4 šířky čepele. Mnohé taxony s variabilními listy jsou zařazeny do dvou a více kategorií.

Složené listy se dělí na dlanité a zpeřené. Rostliny, které mají menší listy trojčetné a větší zpeřené, se dvěma jařmy (např. Aegopodium podagraria a některé další druhy čeledi Apiaceae), jsou klasifikovány v obou kategoriích. Uváděný stupeň vícenásobného zpeření se vztahuje k dobře vyvinutým listům, a to zejména k jejich bazální části. Taxony s vícenásobně zpeřenými listy jsou klasifikovány ve více než jedné kategorii složeného listu, ale velmi malé listy, které mohou mít charakter listu jednoduchého členěného, nejsou vzaty v potaz.

Nezřídka existují i přechody mezi jednoduchými a složenými listy, zejména mezi peřenosečnými a zpeřenými. Listy s čárkovitými až nitkovitými úkrojky jsou hodnoceny jako jednoduché, a to i u listů vícenásobně členěných (např. lodyžní listy Batrachium fluitans, Cardamine pratensis a druhů rodu Seseli). Naopak širší úkrojky přisedající na vřeteno zřetelným zúžením nebo stopečkou jsou hodnoceny jako listy složené (např. lodyžní listy Cardamine dentate nebo přízemní listy Pimpinella saxifrage). Vícenásobně zpeřené listy se považují za složené v případě, že alespoň první stupeň členění odpovídá listu složenému.

Heterofylní (různolisté) rostliny jsou zařazeny do více kategorií, za heterofylii se však nepovažuje odlišná míra členění mladších listů. Pro rostliny s listy zakrnělými (paraziti, např. Cuscuta) nebo s fylokladii nahrazujícími (zakrnělé) listy (např. Asparagus) je použita kategorie listy redukované.

Zdrojem údajů jsou popisy v Květeně České republiky (díly 1–8 Hejný et al. 1988–1992 Slavík et al. 1995–2004 Štěpánková et al. 2010). V nejasných případech (především u nepůvodních taxonů naší flóry) byly použity i další prameny, zejména Flora of North America (Flora of North America Editorial Committee 1993), Flora of China (Wu et al. 1994) a Flora of Pakistan (www.tropicos.org/Project/Pakistan).

Kategorie

  • jednoduchý – celistvý
  • jednoduchý – dlanitě členěný
  • jednoduchý – peřeně členěný
  • jednoduchý – vidličnatě členěný
  • jednoduchý – znožený
  • složený – trojčetný
  • složený – dlanitě složený pětičetný
  • složený – dlanitě složený sedmičetný
  • složený – dlanitě složený mnohočetný
  • složený – lichozpeřený
  • složený – sudozpeřený
  • složený – přetrhovaně zpeřený
  • složený – dvakrát zpeřený
  • složený – třikrát zpeřený
  • složený – čtyřikrát zpeřený
  • redukovaný

Zdroj dat a citace

Grulich V., Holubová D., Štěpánková P. & Řezníčková M. (2017) Tvar listu. – www.pladias.cz.

Další literatura

Flora of North America Editorial Committee (eds) (1993) Flora of North America North of Mexico. – Oxford University Press, New York.
Flora of Pakistan. – http://www.tropicos.org/Project/Pakistan
Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.
Wu Z., Raven P. H. & Huang D. (eds) (1994) Flora of China. – Science Press, Beijing & Missouri Botanical Garden, St. Louis.

Palisty

Palisty, tedy párové listové úkrojky na bázi řapíku nebo přisedlé listové čepele, mohou být přítomny nebo chybět. Palisty prchavé, tj. záhy opadavé (zpravidla po vývinu listové čepele), jsou posuzovány jako přítomné (např. Prunus). Za palisty se považují i palisty vmezeřené, které nejsou morfologicky odlišitelné od pravých listů, s nimiž tvoří čtyřčetné nebo vícečetné přesleny (např. Rubiaceae). Palisty přeměněné na žlázky (např. Lotus) nebo chlupovité útvary (např. Portulacaceae) se zde nepovažují za palisty.

Přítomnost palistů byla excerpována z popisů v Květeně České republiky (díly 1–8 Hejný et al. 1988–1992 Slavík et al. 1995–2004 Štěpánková et al. 2010) a v nejasných případech (především u nepůvodních taxonů) byly popisy konfrontovány s dalšími prameny, zejména s popisy v kompendiích Flora of North America (Flora of North America Editorial Committee 1993), Flora of China (Wu et al. 1994) a Flora of Pakistan (www.tropicos.org/Project/Pakistan).

Kategorie

Zdroj dat a citace

Grulich V., Holubová D., Štěpánková P. & Řezníčková M. (2017) Palisty. – www.pladias.cz.

Další literatura

Flora of North America Editorial Committee (eds) (1993) Flora of North America North of Mexico. – Oxford University Press, New York.
Flora of Pakistan. – http://www.tropicos.org/Project/Pakistan
Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.
Wu Z., Raven P. H. & Huang D. (eds) (1994) Flora of China. – Science Press, Beijing & Missouri Botanical Garden, St. Louis.

Řapík

Řapík může být přítomen nebo chybět. U některých rostlin může být u některých listů přítomen a u jiných chybět. Jako zdroj dat byla použita Květena České republiky (díly 1–8 Hejný et al. 1988–1992 Slavík et al. 1995–2004 Štěpánková et al. 2010), Klíč ke květeně České republiky (Kubát et al. 2002) a atlasy Új magyar füvészkönyv (Király et al. 2011) a Exkursionsflora von Deutschland (Jäger & Werner 2000).

Kategorie

  • přítomen
  • převážně přítomen
  • přítomen i chybí
  • převážně chybí
  • chybí

Zdroj dat a citace

Prokešová H. & Grulich V. (2017) Řapík. – www.pladias.cz.

Další literatura

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Jäger E. J. & Werner K. (eds) (2000) Rothmaler, Exkursionsflora von Deutschland. Band 3. Gefäßpflanzen: Atlasband. Ed. 10. – Spectrum Akademischer Verlag, Heidelberg & Berlin.
Király G., Virók V. & Molnár V. (eds) (2011) Új Magyar füvészkönyv. Magyarország hajtásos növényei: ábrák [New Hungarian Herbal. The vascular plants of Hungary: Figures]. – Aggteleki Nemzeti Park Igazgatóság, Jósvafő.
Kubát K., Hrouda L., Chrtek J. Jr., Kaplan Z., Kirschner J. & Štěpánek J. (eds) (2002) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Vytrvalost listů

Vytrvalost listů je důležitá vlastnost pro konkurenceschopnost rostliny. Je ovlivněna jednak podnebím v areálu taxonu, jednak mikroklimatem a dostupností živin a světla na stanovištích taxonu. Údaje byly převzaty z databáze BiolFlor (Klotz & Kühn 2002).

  • přezimující – listy se vyvíjejí na podzim, přezimují zelené a odumírají na jaře nebo v létě
  • jarní – listy zelené od časného jara do časného léta, potom obvykle odumírají
  • letní – listy zelené v teplém období roku
  • stálezelený – listy zelené po celý rok, často přežívají víc než jeden rok

Kategorie

Zdroj dat a citace

Klotz S. & Kühn I. (2002) Blattmerkmale. – In: Klotz S., Kühn I. & Durka W. (eds), BIOLFLOR: eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, Schriftenreihe für Vegetationskunde 38: 119–126.

Opadavost listů dřevin

Listy různých druhů dřevin se fenologicky výrazně liší. Většina druhů středoevropských dřevin má listy opadavé na zimu, zatímco menší část má listy vždyzelené. Poloopadavé listy se vyskytují jen vzácně, většinou jen u pěstovaných druhů. Do kategorie listů poloopadavých na zimu řadíme jen listy aspoň částečně zelené přes zimu a opadávající na jaře, nikoliv tzv. marcescentní listy, které odumírají na podzim, ale přes zimu ještě vytrvávají v suchém stavu na matečné rostlině (např. u mladých jedinců rodu Quercus).

Údaje o opadavosti listů byly převzaty z Květeny České republiky (díly 1–8 Hejný et al. 1988–1992 Slavík et al. 1995–2004 Štěpánková et al. 2010), Klíče ke květeně České republiky (Kaplan et al. 2019), některých zahraničních flór a doplněny vlastním pozorováním.

Kategorie

  • vždyzelené
  • opadavé na zimu
  • poloopadavé na zimu
  • poloopadavé v období sucha

Zdroj dat a citace

Štěpánková P. & Grulich V. (2020) Opadavost listů dřevin. – www.pladias.cz.

Další literatura

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Funkční typ listů dřevin

Fukční typy listů dřevin, často používané pro fyziognomickou klasifikaci lesní a keřové vegetace, jsou rozlišovány podle morfologie, anatomické stavby a vytrvalosti. Většina krytosemenných dřevin středoevropské flóry má široké opadavé nebo poloopadavé listy, které mají velkou specifickou listovou plochu, tj. jsou relativně velké vzhledem ke své tloušťce. Ostatní typy listů jsou až na vzácné výjimky (Larix) víceleté a zpravidla se označují jako vždyzelené. Jehlicovité a šupinovité listy se vyskytují zejména u jehličnanů a některých druhů čeledi Ericaceae. Sklerofylní listy jsou ploché, ale mají silně vyvinuté sklerenchymatické pletivo, což způsobuje jejich tuhost zpravidla jde o malé kožovité listy s malou specifickou listovou plochou, které jsou přizpůsobeny suchému klimatu. Laurofylní listy jsou větší a tenčí než sklerofylní listy a mají menší podíl sklerenchymatického pletiva zpravidla jsou tmavě zelené, hladké a lesklé. Tyto listy jsou adaptovány na celoročně vlhké klima s mírnou zimou. Několik málo druhů, které je obtížné zařadit do těchto kategorií, jsou hodnoceny jako „zvláštní typ”.

Údaje o typech listů byly převzaty z Květeny České republiky (díly 1–8 Hejný et al. 1988–1992 Slavík et al. 1995–2004 Štěpánková et al. 2010), Klíče ke květeně České republiky (Kaplan et al. 2019), některých zahraničních flór a doplněny vlastním pozorováním.

Kategorie

  • jehlicovité
  • šupinovité
  • široké opadavé nebo poloopadavé
  • sklerofylní
  • laurofylní
  • zvláštní typ

Zdroj dat a citace

Štěpánková P. & Grulich V. (2020) Funkční typ listů dřevin. – www.pladias.cz.

Další literatura

Hejný S., Slavík B., Chrtek J., Tomšovic P. & Kovanda M. (eds) (1988) Květena České socialistické republiky [Flora of the Czech Socialist Republic]. Vol. 1. – Academia, Praha.
Hejný S., Slavík B., Hrouda L. & Skalický V. (eds) (1990) Květena České republiky [Flora of the Czech Republic]. Vol. 2. – Academia, Praha.
Hejný S., Slavík B., Kirschner J. & Křísa B. (eds) (1992) Květena České republiky [Flora of the Czech Republic]. Vol. 3. – Academia, Praha.
Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.
Slavík B., Chrtek J. jun. & Štěpánková J. (eds) (2000) Květena České republiky [Flora of the Czech Republic]. Vol. 6. – Academia, Praha.
Slavík B., Chrtek J. jun. & Tomšovic P. (eds) (1997) Květena České republiky [Flora of the Czech Republic]. Vol. 5. – Academia, Praha.
Slavík B., Smejkal M., Dvořáková M. & Grulich V. (eds) (1995) Květena České republiky [Flora of the Czech Republic]. Vol. 4. – Academia, Praha.
Slavík B., Štěpánková J. & Štěpánek J. (eds) (2004) Květena České republiky [Flora of the Czech Republic]. Vol. 7. – Academia, Praha.
Štěpánková J., Chrtek J. jun. & Kaplan Z. (eds) (2010) Květena České republiky [Flora of the Czech Republic]. Vol. 8. – Academia, Praha.

Doba kvetení

Doba kvetení je uvedena jako měsíce začátku a konce kvetení taxonu v České republice. Údaj je převzat z Klíče ke květeně České republiky (Kaplan et al. 2019).

Zdroj dat a citace

Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.

Barva květu

Barva květu je uvedena pro téměř všechny krytosemenné rostliny s výjimkou okřehků (Araceae p. p.) a některých kříženců, k nimž se přesné údaje o barvě květů nepodařilo zjistit.

Pokud má jeden druh více barev květu, jsou u planých druhů uvažovány všechny, a to bez ohledu na jejich frekvenci. Stejným způsobem jsou tedy hodnoceny jak druhy, které pravidelně vytvářejí populace rostlin s různou barvou květů (např. Corydalis cava a Iris pumila), tak druhy, kde se s barevnou odchylkou setkáváme spíše výjimečně (např. albinismus u Salvia pratensis nebo růžové květy u Ajuga reptans). Celá variabilita barvy květů ale není důsledně uvedena u rostlin pěstovaných, tudíž nemusí být zahrnuty všechny barevně odlišné kultivary (např. Gladiolus hortulanus a Callistephus chinensis). U rostlin s květy dvoubarevnými (např. Cypripedium calceolus) jsou uvedeny barvy obě, u rostlin s květy vícebarevnými (např. „strakatý“ pysk u Ophrys apifera) je uvedena barva převažující.

Má-li květ zřetelnou korunu nebo okvětí, udávaná barva květů se řídí těmito částmi. Pokud jsou u takového květu kontrastně zbarveny listeny (např. Melampyrum nemorosum), jejich barva se nebere v potaz. Pokud koruna nebo okvětí není vyvinuto, barva květu vychází z kalicha (např. Daphne mezereum), listenů (např. Aristolochia clematitis), souboru listenů a listenců v květenství (Euphorbia) nebo listenů obalíčku (Bupleurum longifolium). U áronovitých rostlin s kontrastně zbarveným vlastním květenství a toulcem (např. Calla palustris) je uvedena barva obou částí. U některých skupin rostlin s velmi redukovanými květy se udává celková barva květenství (např. Betula, Salix, některé Cyperaceae a Typhaceae). U lipnicovitých (Poaceae) jsou klásky hodnoceny jako zelené, a to bez ohledu na případný fialový nádech výjimkou jsou např. Melica ciliata agg. a Cortaderia, hodnocené jako bílé. Rovněž v dalších, vzácných případech je jako barva květů uvedena barva květenství (např. zelená u Ficus carica). U zástupců hvězdnicovitých byla zvlášť hodnocena barva paprsku a terče v případě, že paprsek je vyvinut a kontrastně zbarven (např. Bellis perennis). U druhů s velmi drobnými úbory a málo zřetelnými květy byla hodnocena především barva zákrovu (např. Artemisia campestris a Xanthium). Barva zákrovu byla hodnocena i u „slaměnek“ (např. Helichrysum a Xeranthemum).


Watch the video: PrezivljavanjeLekovite Biljke-CRNI TRN - SurviivalHealing Plants-BLACKTHORN (January 2023).